John H. Argyris, Gunter Faust, Maria Haase
Die Erforschung des Chaos (eBook, PDF)
Eine Einführung für Naturwissenschaftler und Ingenieure
-20%11
39,99 €
49,99 €**
39,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
20 °P sammeln
-20%11
39,99 €
49,99 €**
39,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Als Download kaufen
49,99 €****
-20%11
39,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
49,99 €****
-20%11
39,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
John H. Argyris, Gunter Faust, Maria Haase
Die Erforschung des Chaos (eBook, PDF)
Eine Einführung für Naturwissenschaftler und Ingenieure
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Das Buch stellt die grundlegenden Konzepte der Chaos-Theorie und die mathematischen Hilfsmittel so elementar wie möglich dar.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 72.23MB
Andere Kunden interessierten sich auch für
- -20%11Synergetics (eBook, PDF)35,96 €
- Morton John CantyChaos und Systeme (eBook, PDF)29,99 €
- -20%11Urs KirchgraberDynamics Reported (eBook, PDF)35,96 €
- -10%11Urs KirchgraberDynamics Reported (eBook, PDF)35,96 €
- -55%11Karl-Heinz BeckerDynamische Systeme und Fraktale (eBook, PDF)35,96 €
- -21%11Komplexe Systeme und Nichtlineare Dynamik in Natur und Gesellschaft (eBook, PDF)109,99 €
- Günter VojtaTeubner-Taschenbuch der statistischen Physik (eBook, PDF)42,25 €
-
- -21%11
- -45%11
Das Buch stellt die grundlegenden Konzepte der Chaos-Theorie und die mathematischen Hilfsmittel so elementar wie möglich dar.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 790
- Erscheinungstermin: 9. März 2013
- Deutsch
- ISBN-13: 9783322904416
- Artikelnr.: 53116396
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 790
- Erscheinungstermin: 9. März 2013
- Deutsch
- ISBN-13: 9783322904416
- Artikelnr.: 53116396
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Prof. em. Dr. Dr. h. c. mult. John Argyris ist Direktor des Instituts für Computer-Anwendungen an der Universität Stuttgart.
1 Einführung.- 2 Hintergrund und Motivation.- 2.1 Kausalität - Determinismus.- 2.2 Dynamische Systeme - Beispiele.- 2.3 Phasenraum.- 2.4 Erste Integrale und Mannigfaltigkeiten.- 2.5 Qualitative und quantitative Betrachtungsweise.- 3 Mathematische Einführung in dynamische Systeme.- 3.1 Lineare autonome Systeme.- 3.2 Nichtlineare Systeme und Stabilität.- 3.3 Invariante Mannigfaltigkeiten.- 3.4 Diskretisierung in der Zeit.- 3.5 Poincaré-Abbildung.- 3.6 Fixpunkte und Zyklen diskreter Systeme.- 3.7 Ein Beispiel diskreter Dynamik - die logistische Abbildung.- 4 Dynamische Systeme ohne Dissipation.- 4.1 Hamiltonsche Gleichungen.- 4.2 Kanonische Transformationen, Integrierbarkeit.- 4.3 f-dimensionale Ringe (Tori) und Trajektorien.- 4.4 Die Grundzüge der KAM-Theorie.- 4.5 Instabile Tori, chaotische Bereiche.- 4.6 Ein numerisches Beispiel: die Hénon-Abbildung.- 5 Dynamische Systeme mit Dissipation.- 5.1 Volumenkontraktion - eine wesentliche Eigenschaft dissipativer Systeme.- 5.2 Seltsamer Attraktor: Lorenz-Attraktor.- 5.3 Leistungsspektrum und Autokorrelation.- 5.4 Lyapunov-Exponenten.- 5.5 Dimensionen.- 5.6 Kolmogorov-Sinai-Entropie.- 6 Lokale Bifurkationstheorie.- 6.1 Motivation.- 6.2 Zentrumsmannigfaltigkeit.- 6.3 Normalformen.- 6.4 Normalformen von Verzweigungen einparametriger Flüsse.- 6.5 Stabilität von Verzweigungen infolge Störungen.- 6.6 Verzweigungen von Fixpunkten einparametriger Abbildungen.- 6.7 Renormierung und Selbstähnlichkeit am Beispiel der logistischen Abbildung.- 6.8 Ein beschreibender Exkurs in die Synergetik.- 7 Konvektionsströmungen: Bénard-Problem.- 7.1 Hydrodynamische Grundgleichungen.- 7.2 Boussinesq-Oberbeck-Approximation.- 7.3 Lorenz-Modell.- 7.4 Entwicklung des Lorenz-Systems.- 8 Wege zur Turbulenz.- 8.1 Landau-Szenario.- 8.2Ruelle-Takens-Szenario.- 8.3 Universelle Eigenschaften des Übergangs von Quasiperiodizität zu Chaos.- 8.4 Die Feigenbaum-Route über Periodenverdopplungen ins Chaos...- 8.5 Quasiperiodischer Übergang bei fester Windungszahl.- 8.6 Der Weg über Intermittenz ins Chaos.- 8.7 Wege aus dem Chaos, Steuerung des Chaos.- 9 Computerexperimente.- 9.1 Einblick in Knochenumbauprozesse.- 9.2 Hénon-Abbildung.- 9.3 Wiederbegegnung mit dem Lorenz-System.- 9.4 Van der Polsche Gleichung.- 9.5 Duffing-Gleichung.- 9.6 Julia-Mengen und ihr Ordnungsprinzip.- 9.7 Struktur der Arnol'd-Zungen.- 9.8 Zur Kinetik chemischer Reaktionen an Einkristall-Oberflächen.- 9.9 Ein Überblick über chaotisches Verhalten in unserem Sonnensystem.- Farbtafeln.- Literatur.
1 Einführung.- 2 Hintergrund und Motivation.- 2.1 Kausalität - Determinismus.- 2.2 Dynamische Systeme - Beispiele.- 2.3 Phasenraum.- 2.4 Erste Integrale und Mannigfaltigkeiten.- 2.5 Qualitative und quantitative Betrachtungsweise.- 3 Mathematische Einführung in dynamische Systeme.- 3.1 Lineare autonome Systeme.- 3.2 Nichtlineare Systeme und Stabilität.- 3.3 Invariante Mannigfaltigkeiten.- 3.4 Diskretisierung in der Zeit.- 3.5 Poincaré-Abbildung.- 3.6 Fixpunkte und Zyklen diskreter Systeme.- 3.7 Ein Beispiel diskreter Dynamik - die logistische Abbildung.- 4 Dynamische Systeme ohne Dissipation.- 4.1 Hamiltonsche Gleichungen.- 4.2 Kanonische Transformationen, Integrierbarkeit.- 4.3 f-dimensionale Ringe (Tori) und Trajektorien.- 4.4 Die Grundzüge der KAM-Theorie.- 4.5 Instabile Tori, chaotische Bereiche.- 4.6 Ein numerisches Beispiel: die Hénon-Abbildung.- 5 Dynamische Systeme mit Dissipation.- 5.1 Volumenkontraktion - eine wesentliche Eigenschaft dissipativer Systeme.- 5.2 Seltsamer Attraktor: Lorenz-Attraktor.- 5.3 Leistungsspektrum und Autokorrelation.- 5.4 Lyapunov-Exponenten.- 5.5 Dimensionen.- 5.6 Kolmogorov-Sinai-Entropie.- 6 Lokale Bifurkationstheorie.- 6.1 Motivation.- 6.2 Zentrumsmannigfaltigkeit.- 6.3 Normalformen.- 6.4 Normalformen von Verzweigungen einparametriger Flüsse.- 6.5 Stabilität von Verzweigungen infolge Störungen.- 6.6 Verzweigungen von Fixpunkten einparametriger Abbildungen.- 6.7 Renormierung und Selbstähnlichkeit am Beispiel der logistischen Abbildung.- 6.8 Ein beschreibender Exkurs in die Synergetik.- 7 Konvektionsströmungen: Bénard-Problem.- 7.1 Hydrodynamische Grundgleichungen.- 7.2 Boussinesq-Oberbeck-Approximation.- 7.3 Lorenz-Modell.- 7.4 Entwicklung des Lorenz-Systems.- 8 Wege zur Turbulenz.- 8.1 Landau-Szenario.- 8.2Ruelle-Takens-Szenario.- 8.3 Universelle Eigenschaften des Übergangs von Quasiperiodizität zu Chaos.- 8.4 Die Feigenbaum-Route über Periodenverdopplungen ins Chaos...- 8.5 Quasiperiodischer Übergang bei fester Windungszahl.- 8.6 Der Weg über Intermittenz ins Chaos.- 8.7 Wege aus dem Chaos, Steuerung des Chaos.- 9 Computerexperimente.- 9.1 Einblick in Knochenumbauprozesse.- 9.2 Hénon-Abbildung.- 9.3 Wiederbegegnung mit dem Lorenz-System.- 9.4 Van der Polsche Gleichung.- 9.5 Duffing-Gleichung.- 9.6 Julia-Mengen und ihr Ordnungsprinzip.- 9.7 Struktur der Arnol'd-Zungen.- 9.8 Zur Kinetik chemischer Reaktionen an Einkristall-Oberflächen.- 9.9 Ein Überblick über chaotisches Verhalten in unserem Sonnensystem.- Farbtafeln.- Literatur.