Bachelorarbeit aus dem Jahr 2012 im Fachbereich Mathematik - Statistik, Note: 1,3, Technische Universität Dresden (Professur für Quantitative Verfahren, insb. Ökonometrie), Sprache: Deutsch, Abstract: Der erste Teil dieser Arbeit beschäftigt sich mit den Modellannahmen der Kleinst-Quadrate-Schätzung. Multikollinearität als Annahmeverletzung sowie deren Diagnosemöglichkeiten und Konsequenzen für das Schätzergebnis werden untersucht. Das Ridge-Schätzverfahren bietet Möglichkeiten, die durch Multikollinearität auftretenden Nachteile zu vermindern. Verschiedene Ridge-Verfahren werden vorgestellt. Danach werden mittels der Software R verschiedene Daten mit künstlicher Multikollinearität simuliert. Unter dreistuger Variation fünf verschiedener Modellparameter werden die Ridge-Schätzer auf ihre Güte untersucht. Der beste Ridge-Schätzer wird ermittelt. Im letzten Teil der Arbeit wird der optimale Komplexitätsparameter berechnet. Ein unerwartetes Untersuchungsergebnis ist der Nachweis der Existenz negativer optimaler Komplexitätsparameter bei der Ridge-Schätzung in R.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.