
Differentialgeometrie (eBook, PDF)
Kurven - Flächen - Mannigfaltigkeiten
PAYBACK Punkte
18 °P sammeln!
Dieses Buch ist eine Einführung in die Differentialgeometrie und wendet sich insbesondere an Studenten mittlerer Semester, nach einem abgeschlossenen Vorlesungs-Zyklus in Analysis und Linearer Algebra (etwa im Umfang der Grundkurs-Bände von O. Forster zur Analysis und von G. Fischer zur Linearen Algebra). Zunächst geht es - das umfaßt etwa die Hälfte des Buches - um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann in der zweiten Hälfte höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapit...
Dieses Buch ist eine Einführung in die Differentialgeometrie und wendet sich insbesondere an Studenten mittlerer Semester, nach einem abgeschlossenen Vorlesungs-Zyklus in Analysis und Linearer Algebra (etwa im Umfang der Grundkurs-Bände von O. Forster zur Analysis und von G. Fischer zur Linearen Algebra). Zunächst geht es - das umfaßt etwa die Hälfte des Buches - um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann in der zweiten Hälfte höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel 4: "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluß bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" sowie in der allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was auch durch zahlreiche Abbildungen unterstützt wird.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.