42,95 €
42,95 €
inkl. MwSt.
Sofort per Download lieferbar
21 °P sammeln
42,95 €
Als Download kaufen
42,95 €
inkl. MwSt.
Sofort per Download lieferbar
21 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
42,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Digital Audio Theory: A Practical Guide bridges the fundamental concepts and equations of digital audio with their real-world implementation in an accessible introduction, with dozens of programming examples and projects.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.35MB
Andere Kunden interessierten sich auch für
- James ZjalicDigital Audio Forensics Fundamentals (eBook, PDF)42,95 €
- Artificial Intelligence and Music Ecosystem (eBook, PDF)41,95 €
- Distortion in Music Production (eBook, PDF)47,95 €
- Caroline HaighClassical Recording (eBook, PDF)42,95 €
- Thomas BrettThe Creative Electronic Music Producer (eBook, PDF)35,95 €
- Raina MurnakPositive Psychology for Music Professionals (eBook, PDF)39,95 €
- Matthew John Yee-KingBuild AI-Enhanced Audio Plugins with C++ (eBook, PDF)42,95 €
-
-
-
Digital Audio Theory: A Practical Guide bridges the fundamental concepts and equations of digital audio with their real-world implementation in an accessible introduction, with dozens of programming examples and projects.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 254
- Erscheinungstermin: 27. Dezember 2020
- Englisch
- ISBN-13: 9781000292251
- Artikelnr.: 61610396
- Verlag: Taylor & Francis
- Seitenzahl: 254
- Erscheinungstermin: 27. Dezember 2020
- Englisch
- ISBN-13: 9781000292251
- Artikelnr.: 61610396
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Christopher L. Bennett is a Professor in the Music Engineering Technology program at the University of Miami, Frost School of Music. He conducts research, teaches, and publishes in the fields of digital audio, audio programming, transducers, acoustics, psychoacoustics, and medical acoustics.
1 Introduction
1.1 Describing audio signals
1.2 Digital audio basics
1.3 Describing audio systems
1.4 Further reading
1.5 Challenges
1.6 Project - audio playback
2 Complex vectors and phasors
2.1 Complex number representation and operations
2.2 Complex conjugates
2.3 Phasors
2.4 Beat frequencies
2.5 Challenges
2.6 Project - AM and FM synthesis
Bibliography
3 Sampling
3.1 Phasor representation on the complex plane
3.2 Nyquist frequency
3.3 Time shift operators
3.4 Sampling a continuous signal
3.5 Jitter
3.6 Challenges
Bibliography
4 Aliasing and reconstruction
4.1 Under-sampling
4.2 Predicting the alias frequency
4.3 Anti-aliasing filter
4.4 Reconstruction
4.5 Challenges
4.6 Project - aliasing
Bibliography
5 Quantization
5.1 Quantization resolution
5.2 Audio buffers
5.3 Sample-and-hold circuit
5.4 Quantization error (eq)
5.5 Pulse code modulation
5.6 Challenges
Bibliography
6 Dither
6.1 Signal-to-Error Ratio (SER)
6.2 SER at low signal levels
6.3 Applying dither
6.4 Triangular PDF dither
6.5 High-frequency dither
6.6 Challenges
6.7 Project - dither effects
Bibliography
7 DSP basics
7.1 Time-shift operators
7.2 Time-reversal operator
7.3 Time scaling
7.4 Block diagrams
7.5 Difference equations
7.6 Canonical form
7.7 Challenges
7.8 Project - plucked string model
Bibliography
8 FIR filters
8.1 FIR filters by way of example
8.2 Impulse response
8.3 Convolution
8.4 Cross-correlation
8.5 FIR filter phase
8.6 Designing FIR filters
8.7 Challenges
8.8 Project - FIR filters
Bibliography
9 z-Domain
9.1 Frequency response
9.2 Magnitude response
9.3 Comb filters
9.4 z-Transform
9.5 Pole/zero plots
9.6 Filter phase response
9.7 Group delay
9.8 Challenges
10 IIR filters
10.1 General characteristics of IIR filters
10.2 IIR filter transfer functions
10.3 IIR filter stability
10.4 Second-order resonators
10.5 Biquadratic filters
10.6 Proportional parametric EQ
10.7 Forward-reverse filtering
10.8 Challenges
10.9 Project - resonator
Bibliography
11 Impulse response measurements
11.1 Noise reduction through averaging
11.2 Capturing IRs with MLS
11.3 Capturing IRs with ESS
11.4 Challenges
11.5 Project - room response measurements
Bibliography
12 Discrete Fourier transform
12.1 Discretizing a transfer function
12.2 Sampling the frequency response
12.3 The DFT and inverse discrete Fourier transform
12.4 Twiddle factor
12.5 Properties of the DFT
12.6 Revisiting sampling in the frequency domain
12.7 Frequency interpolation
12.8 Challenges
12.9 Project - spectral filtering
13 Real-time spectral processing
13.1 Filtering in the frequency domain
13.2 Windowing
13.3 Constant overlap and add
13.4 Spectrograms
13.5 Challenges
13.6 Project - automatic feedback control
14 Analog modeling
14.1 Derivation of the z-transform
14.2 Impulse invariance
14.3 Bilinear transformation
14.4 Frequency sampling
14.5 Non-linear modeling with ESS
14.6 Challenges
Bibliography
1.1 Describing audio signals
1.2 Digital audio basics
1.3 Describing audio systems
1.4 Further reading
1.5 Challenges
1.6 Project - audio playback
2 Complex vectors and phasors
2.1 Complex number representation and operations
2.2 Complex conjugates
2.3 Phasors
2.4 Beat frequencies
2.5 Challenges
2.6 Project - AM and FM synthesis
Bibliography
3 Sampling
3.1 Phasor representation on the complex plane
3.2 Nyquist frequency
3.3 Time shift operators
3.4 Sampling a continuous signal
3.5 Jitter
3.6 Challenges
Bibliography
4 Aliasing and reconstruction
4.1 Under-sampling
4.2 Predicting the alias frequency
4.3 Anti-aliasing filter
4.4 Reconstruction
4.5 Challenges
4.6 Project - aliasing
Bibliography
5 Quantization
5.1 Quantization resolution
5.2 Audio buffers
5.3 Sample-and-hold circuit
5.4 Quantization error (eq)
5.5 Pulse code modulation
5.6 Challenges
Bibliography
6 Dither
6.1 Signal-to-Error Ratio (SER)
6.2 SER at low signal levels
6.3 Applying dither
6.4 Triangular PDF dither
6.5 High-frequency dither
6.6 Challenges
6.7 Project - dither effects
Bibliography
7 DSP basics
7.1 Time-shift operators
7.2 Time-reversal operator
7.3 Time scaling
7.4 Block diagrams
7.5 Difference equations
7.6 Canonical form
7.7 Challenges
7.8 Project - plucked string model
Bibliography
8 FIR filters
8.1 FIR filters by way of example
8.2 Impulse response
8.3 Convolution
8.4 Cross-correlation
8.5 FIR filter phase
8.6 Designing FIR filters
8.7 Challenges
8.8 Project - FIR filters
Bibliography
9 z-Domain
9.1 Frequency response
9.2 Magnitude response
9.3 Comb filters
9.4 z-Transform
9.5 Pole/zero plots
9.6 Filter phase response
9.7 Group delay
9.8 Challenges
10 IIR filters
10.1 General characteristics of IIR filters
10.2 IIR filter transfer functions
10.3 IIR filter stability
10.4 Second-order resonators
10.5 Biquadratic filters
10.6 Proportional parametric EQ
10.7 Forward-reverse filtering
10.8 Challenges
10.9 Project - resonator
Bibliography
11 Impulse response measurements
11.1 Noise reduction through averaging
11.2 Capturing IRs with MLS
11.3 Capturing IRs with ESS
11.4 Challenges
11.5 Project - room response measurements
Bibliography
12 Discrete Fourier transform
12.1 Discretizing a transfer function
12.2 Sampling the frequency response
12.3 The DFT and inverse discrete Fourier transform
12.4 Twiddle factor
12.5 Properties of the DFT
12.6 Revisiting sampling in the frequency domain
12.7 Frequency interpolation
12.8 Challenges
12.9 Project - spectral filtering
13 Real-time spectral processing
13.1 Filtering in the frequency domain
13.2 Windowing
13.3 Constant overlap and add
13.4 Spectrograms
13.5 Challenges
13.6 Project - automatic feedback control
14 Analog modeling
14.1 Derivation of the z-transform
14.2 Impulse invariance
14.3 Bilinear transformation
14.4 Frequency sampling
14.5 Non-linear modeling with ESS
14.6 Challenges
Bibliography
1 Introduction
1.1 Describing audio signals
1.2 Digital audio basics
1.3 Describing audio systems
1.4 Further reading
1.5 Challenges
1.6 Project - audio playback
2 Complex vectors and phasors
2.1 Complex number representation and operations
2.2 Complex conjugates
2.3 Phasors
2.4 Beat frequencies
2.5 Challenges
2.6 Project - AM and FM synthesis
Bibliography
3 Sampling
3.1 Phasor representation on the complex plane
3.2 Nyquist frequency
3.3 Time shift operators
3.4 Sampling a continuous signal
3.5 Jitter
3.6 Challenges
Bibliography
4 Aliasing and reconstruction
4.1 Under-sampling
4.2 Predicting the alias frequency
4.3 Anti-aliasing filter
4.4 Reconstruction
4.5 Challenges
4.6 Project - aliasing
Bibliography
5 Quantization
5.1 Quantization resolution
5.2 Audio buffers
5.3 Sample-and-hold circuit
5.4 Quantization error (eq)
5.5 Pulse code modulation
5.6 Challenges
Bibliography
6 Dither
6.1 Signal-to-Error Ratio (SER)
6.2 SER at low signal levels
6.3 Applying dither
6.4 Triangular PDF dither
6.5 High-frequency dither
6.6 Challenges
6.7 Project - dither effects
Bibliography
7 DSP basics
7.1 Time-shift operators
7.2 Time-reversal operator
7.3 Time scaling
7.4 Block diagrams
7.5 Difference equations
7.6 Canonical form
7.7 Challenges
7.8 Project - plucked string model
Bibliography
8 FIR filters
8.1 FIR filters by way of example
8.2 Impulse response
8.3 Convolution
8.4 Cross-correlation
8.5 FIR filter phase
8.6 Designing FIR filters
8.7 Challenges
8.8 Project - FIR filters
Bibliography
9 z-Domain
9.1 Frequency response
9.2 Magnitude response
9.3 Comb filters
9.4 z-Transform
9.5 Pole/zero plots
9.6 Filter phase response
9.7 Group delay
9.8 Challenges
10 IIR filters
10.1 General characteristics of IIR filters
10.2 IIR filter transfer functions
10.3 IIR filter stability
10.4 Second-order resonators
10.5 Biquadratic filters
10.6 Proportional parametric EQ
10.7 Forward-reverse filtering
10.8 Challenges
10.9 Project - resonator
Bibliography
11 Impulse response measurements
11.1 Noise reduction through averaging
11.2 Capturing IRs with MLS
11.3 Capturing IRs with ESS
11.4 Challenges
11.5 Project - room response measurements
Bibliography
12 Discrete Fourier transform
12.1 Discretizing a transfer function
12.2 Sampling the frequency response
12.3 The DFT and inverse discrete Fourier transform
12.4 Twiddle factor
12.5 Properties of the DFT
12.6 Revisiting sampling in the frequency domain
12.7 Frequency interpolation
12.8 Challenges
12.9 Project - spectral filtering
13 Real-time spectral processing
13.1 Filtering in the frequency domain
13.2 Windowing
13.3 Constant overlap and add
13.4 Spectrograms
13.5 Challenges
13.6 Project - automatic feedback control
14 Analog modeling
14.1 Derivation of the z-transform
14.2 Impulse invariance
14.3 Bilinear transformation
14.4 Frequency sampling
14.5 Non-linear modeling with ESS
14.6 Challenges
Bibliography
1.1 Describing audio signals
1.2 Digital audio basics
1.3 Describing audio systems
1.4 Further reading
1.5 Challenges
1.6 Project - audio playback
2 Complex vectors and phasors
2.1 Complex number representation and operations
2.2 Complex conjugates
2.3 Phasors
2.4 Beat frequencies
2.5 Challenges
2.6 Project - AM and FM synthesis
Bibliography
3 Sampling
3.1 Phasor representation on the complex plane
3.2 Nyquist frequency
3.3 Time shift operators
3.4 Sampling a continuous signal
3.5 Jitter
3.6 Challenges
Bibliography
4 Aliasing and reconstruction
4.1 Under-sampling
4.2 Predicting the alias frequency
4.3 Anti-aliasing filter
4.4 Reconstruction
4.5 Challenges
4.6 Project - aliasing
Bibliography
5 Quantization
5.1 Quantization resolution
5.2 Audio buffers
5.3 Sample-and-hold circuit
5.4 Quantization error (eq)
5.5 Pulse code modulation
5.6 Challenges
Bibliography
6 Dither
6.1 Signal-to-Error Ratio (SER)
6.2 SER at low signal levels
6.3 Applying dither
6.4 Triangular PDF dither
6.5 High-frequency dither
6.6 Challenges
6.7 Project - dither effects
Bibliography
7 DSP basics
7.1 Time-shift operators
7.2 Time-reversal operator
7.3 Time scaling
7.4 Block diagrams
7.5 Difference equations
7.6 Canonical form
7.7 Challenges
7.8 Project - plucked string model
Bibliography
8 FIR filters
8.1 FIR filters by way of example
8.2 Impulse response
8.3 Convolution
8.4 Cross-correlation
8.5 FIR filter phase
8.6 Designing FIR filters
8.7 Challenges
8.8 Project - FIR filters
Bibliography
9 z-Domain
9.1 Frequency response
9.2 Magnitude response
9.3 Comb filters
9.4 z-Transform
9.5 Pole/zero plots
9.6 Filter phase response
9.7 Group delay
9.8 Challenges
10 IIR filters
10.1 General characteristics of IIR filters
10.2 IIR filter transfer functions
10.3 IIR filter stability
10.4 Second-order resonators
10.5 Biquadratic filters
10.6 Proportional parametric EQ
10.7 Forward-reverse filtering
10.8 Challenges
10.9 Project - resonator
Bibliography
11 Impulse response measurements
11.1 Noise reduction through averaging
11.2 Capturing IRs with MLS
11.3 Capturing IRs with ESS
11.4 Challenges
11.5 Project - room response measurements
Bibliography
12 Discrete Fourier transform
12.1 Discretizing a transfer function
12.2 Sampling the frequency response
12.3 The DFT and inverse discrete Fourier transform
12.4 Twiddle factor
12.5 Properties of the DFT
12.6 Revisiting sampling in the frequency domain
12.7 Frequency interpolation
12.8 Challenges
12.9 Project - spectral filtering
13 Real-time spectral processing
13.1 Filtering in the frequency domain
13.2 Windowing
13.3 Constant overlap and add
13.4 Spectrograms
13.5 Challenges
13.6 Project - automatic feedback control
14 Analog modeling
14.1 Derivation of the z-transform
14.2 Impulse invariance
14.3 Bilinear transformation
14.4 Frequency sampling
14.5 Non-linear modeling with ESS
14.6 Challenges
Bibliography