Digital Cities Roadmap (eBook, PDF)
IoT-Based Architecture and Sustainable Buildings
Redaktion: Solanki, Arun; Nayyar, Anand; Kumar, Adarsh
Alle Infos zum eBook verschenken
Digital Cities Roadmap (eBook, PDF)
IoT-Based Architecture and Sustainable Buildings
Redaktion: Solanki, Arun; Nayyar, Anand; Kumar, Adarsh
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
DIGITAL CITIES ROADMAP This book details applications of technology to efficient digital city infrastructure and its planning, including smart buildings. Rapid urbanization, demographic changes, environmental changes, and new technologies are changing the views of urban leaders on sustainability, as well as creating and providing public services to tackle these new dynamics. Sustainable development is an objective by which the processes of planning, implementing projects, and development is aimed at meeting the needs of modern communities without compromising the potential of future…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 29.06MB
- IoT and Big Data Analytics for Smart Cities (eBook, PDF)47,95 €
- Hamed TaherdoostDigital Transformation Roadmap (eBook, PDF)47,95 €
- A Roadmap for Enabling Industry 4.0 by Artificial Intelligence (eBook, PDF)173,99 €
- Security and Organization within IoT and Smart Cities (eBook, PDF)45,95 €
- Next-Gen Digital Services. A Retrospective and Roadmap for Service Computing of the Future (eBook, PDF)40,95 €
- Jr. Alex N. BeaversRoadmap to the E-Factory (eBook, PDF)113,95 €
- Will KinghornDigital Transformation in Your Manufacturing Business (eBook, PDF)45,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Jossey-Bass
- Seitenzahl: 544
- Erscheinungstermin: 29. März 2021
- Englisch
- ISBN-13: 9781119792062
- Artikelnr.: 61443244
- Verlag: Jossey-Bass
- Seitenzahl: 544
- Erscheinungstermin: 29. März 2021
- Englisch
- ISBN-13: 9781119792062
- Artikelnr.: 61443244
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 The Use of Machine Learning for Sustainable and Resilient Buildings 1
Kuldeep Singh Kaswan and Jagjit Singh Dhatterwal
1.1 Introduction of ML Sustainable Resilient Building 2
1.2 Related Works 2
1.3 Machine Learning 5
1.4 What is Resilience? 6
1.4.1 Sustainability and Resiliency Conditions 7
1.4.2 Paradigm and Challenges of Sustainability and Resilience 7
1.4.3 Perspectives of Local Community 9
1.5 Sustainability and Resilience of Engineered System 12
1.5.1 Resilience and Sustainable Development Framework for Decision-Making
13
1.5.2 Exposures and Disturbance Events 15
1.5.3 Quantification of Resilience 15
1.5.4 Quantification of Sustainability 16
1.6 Community and Quantification Metrics, Resilience and Sustainability
Objectives 17
1.6.1 Definition of Quantification Metric 18
1.6.2 Considering and Community 19
1.7 Structure Engineering Dilemmas and Resilient Epcot 21
1.7.1 Dilation of Resilience Essence 21
1.7.2 Quality of Life 22
1.8 Development of Risk Informed Criteria for Building Design Hurricane
Resilient on Building 27
1.9 Resilient Infrastructures Against Earthquake and Tsunami Multi-Hazard
28
1.10 Machine Learning With Smart Building 29
1.10.1 Smart Building Appliances 29
1.10.2 Intelligent Tools, Cameras and Electronic Controls in a Connected
House (SRB) 29
1.10.3 Level if Clouds are the IoT Institute Level With SBs 31
1.10.4 Component of Smart Buildings (SB) 33
1.10.5 Machine Learning Tasks in Smart Building Environment 46
1.10.6 ML Tools and Services for Smart Building 47
1.10.7 Big Data Research Applications for SBs in Real-Time 51
1.10.8 Implementation of the ML Concept in the SB Context 51
1.11 Conclusion and Future Research 53
References 58
2 Fire Hazard Detection and Prediction by Machine Learning Techniques in
Smart Buildings (SBs) Using Sensors and Unmanned Aerial Vehicles (UAVs) 63
Sandhya Tarar and Namisha Bhasin
2.1 Introduction 64
2.1.1 Bluetooth 65
2.1.2 Unmanned Aerial Vehicle 65
2.1.3 Sensors 65
2.1.4 Problem Description 67
2.2 Literature Review 68
2.3 Experimental Methods 71
2.3.1 Univariate Time-Series 73
2.3.1.1 Naïve Bayes 74
2.3.1.2 Simple Average 74
2.3.1.3 Moving Average 75
2.3.1.4 Simple Exponential Smoothing (SES) 76
2.3.1.5 Holt's Linear Trend 76
2.3.1.6 Holt-Winters Method 76
2.3.1.7 Autoregressive Integrated Moving Average Model (ARIMA) 77
2.3.2 Multivariate Time-Series Prediction 80
2.3.2.1 Vector Autoregressive (VAR) 80
2.3.3 Hidden Markov Model (HMM) 81
2.3.4 Fuzzy Logic 85
2.4 Results 89
2.5 Conclusion and Future Work 89
References 90
3 Sustainable Infrastructure Theories and Models 97
Saurabh Jain, Keshav Kaushik, Deepak Kumar Sharma, Rajalakshmi
Krishnamurthi and Adarsh Kumar
3.1 Introduction to Data Fusion Approaches in Sustainable Infrastructure 98
3.1.1 The Need for Sustainable Infrastructure 98
3.1.2 Data Fusion 99
3.1.3 Different Types of Data Fusion Architecture 100
3.1.3.1 Centralized Architecture 100
3.1.3.2 Decentralized Architecture 101
3.1.3.3 Distributed Architecture 101
3.1.3.4 Hierarchical Architecture 102
3.1.4 Smart Cities Application With Sustainable Infrastructures Based on
Different Data Fusion Techniques 102
3.2 Smart City Infrastructure Approaches 104
3.2.1 Smart City Infrastructure 104
3.2.2 Smart City IoT Deployments 105
3.2.3 Smart City Control and Monitoring Centers 106
3.2.4 Theory of Unified City Modeling for Smart Infrastructure 108
3.2.5 Smart City Operational Modeling 109
3.3 Theories and Models 110
3.3.1 Sustainable Infrastructure Theories 110
3.3.2 Sustainable Infrastructure Models 112
3.4 Case Studies 113
3.4.1 Case Studies-1: Web Browsing History Analysis 113
3.4.1.1 Objective 115
3.4.2 Case Study-2: Data Model for Group Construction in Student's
Industrial Placement 117
3.5 Conclusion and Future Scope 121
References 122
4 Blockchain for Sustainable Smart Cities 127
Iftikhar Ahmad, Syeda Warda Ashar, Umamma Khalid, Anmol Irfan and Wajeeha
Khalil
4.1 Introduction 128
4.2 Smart City 130
4.2.1 Overview of Smart City 130
4.2.2 Evolution 130
4.2.3 Smart City's Sub Systems 130
4.2.4 Domains of Smart City 132
4.2.5 Challenges 134
4.3 Blockchain 136
4.3.1 Motivation 137
4.3.2 The Birth of Blockchain 137
4.3.3 System of Blockchain 137
4.4 Use Cases of Smart City Implementing Blockchain 138
4.4.1 Blockchain-Based Smart Economy 138
4.4.1.1 Facilitating Faster and Cheaper International Payment 139
4.4.1.2 Distributed Innovations in Financial Transactions 139
4.4.1.3 Enhancing the Transparency of Supply/Global Commodity Chains 140
4.4.1.4 Equity Crowd Funding 141
4.4.2 Blockchain for Smart People 141
4.4.2.1 Elections through Blockchain Technology 141
4.4.2.2 Smart Contract 143
4.4.2.3 Protecting Personal Data 144
4.4.2.4 E-Health: Storing Health Records on Blockchain 145
4.4.2.5 Intellectual Property Rights 145
4.4.2.6 Digital Payments 146
4.4.2.7 Other Use Cases 146
4.4.3 Blockchain-Based Smart Governance 147
4.4.3.1 Transparent Record Keeping and Tracking of Records 147
4.4.3.2 Fraud Free Voting 148
4.4.3.3 Decision Making 150
4.4.4 Blockchain-Based Smart Transport 150
4.4.4.1 Digitizing Driving License 150
4.4.4.2 Smart Ride Sharing 150
4.4.5 Blockchain-Based Smart Environment 151
4.4.5.1 Social Plastic 151
4.4.5.2 Energy 152
4.4.5.3 Environmental Treaties 152
4.4.5.4 Carbon Tax 153
4.4.6 Blockchain-Based Smart Living 153
4.4.6.1 Fighting Against Frauds and Discriminatory Policies and Practices
154
4.4.6.2 Managing Change in Ownership 154
4.4.6.3 Sustainable Buildings 154
4.4.6.4 Other Use Cases 155
4.5 Conclusion 156
References 156
5 Contextualizing Electronic Governance, Smart City Governance and
Sustainable Infrastructure in India: A Study and Framework 163
Nitin K. Tyagi and Mukta Goyal
5.1 Introduction 164
5.2 Related Works 166
5.2.1 Research Questions 166
5.3 Related E-Governance Frameworks 178
5.3.1 Smart City Features in India 181
5.4 Proposed Smart Governance Framework 181
5.5 Results Discussion 185
5.5.1 Initial Stage 185
5.5.2 Design, Development and Delivery Stage 186
5.6 Conclusion 186
References 188
6 Revolutionizing Geriatric Design in Developing Countries: IoT-Enabled
Smart Home Design for the Elderly 193
Shubhi Sonal and Anupadma R.
6.1 Introduction to Geriatric Design 194
6.1.1 Aim, Objectives, and Methodology 196
6.1.2 Organization of Chapter 197
6.2 Background 197
6.2.1 Development of Smart Homes 197
6.2.2 Development of Smart Homes for Elderly 198
6.2.3 Indian Scenario 200
6.3 Need for Smart Homes: An Assessment of Requirements for the
Elderly-Activity Mapping 201
6.3.1 Geriatric Smart Home Design: The Indian Context 202
6.3.2 Elderly Activity Mapping 202
6.3.3 Framework for Smart Homes for Elderly People 206
6.3.4 Architectural Interventions: Spatial Requirements for Daily
Activities 207
6.3.5 Architectural Interventions to Address Issues Faced by Elderly People
208
6.4 Schematic Design for a Nesting Home: IoT-Enabled Smart Home for Elderly
People 208
6.4.1 IoT-Based Real Time Automation for Nesting Homes 208
6.4.2 Technological Components of Elderly Smart Homes 212
6.4.2.1 Sensors for Smart Home 212
6.4.2.2 Health Monitoring System 213
6.4.2.3 Network Devices 213
6.4.2.4 Alerts 214
6.5 Worldwide Elderly Smart Homes 214
6.5.1 Challenges in Smart Elderly Homes 215
6.6 Conclusion and Future Scope 216
References 216
7 Sustainable E-Infrastructure for Blockchain-Based Voting System 221
Mukta Goyal and Adarsh Kumar
7.1 Introduction 222
7.1.1 E-Voting Challenge 224
7.2 Related Works 224
7.3 System Design 227
7.4 Experimentation 230
7.4.1 Software Requirements 230
7.4.2 Function Requirements 230
7.4.2.1 Election Organizer 231
7.4.2.2 Candidate Registration 231
7.4.2.3 Voter Registration Process 232
7.4.3 Common Functional Requirement for All Users 233
7.4.3.1 Result Display 233
7.4.4 Non-Function Requirements 233
7.4.4.1 Performance Requirement 233
7.4.4.2 Security Requirement 233
7.4.4.3 Usability Requirement 233
7.4.4.4 Availability Requirement 234
7.4.5 Implementation Details 234
7.5 Findings & Results 237
7.5.1 Smart Contract Deployment 241
7.6 Conclusion and Future Scope 242
Acknowledgement 246
References 246
8 Impact of IoT-Enabled Smart Cities: A Systematic Review and Challenges
253
K. Rajkumar and U. Hariharan
8.1 Introduction 254
8.2 Recent Development in IoT Application for Modern City 256
8.2.1 IoT Potential Smart City Approach 257
8.2.2 Problems and Related Solutions in Modern Smart Cities Application 259
8.3 Classification of IoT-Based Smart Cities 262
8.3.1 Program Developers 263
8.3.2 Network Type 263
8.3.3 Activities of Standardization Bodies of Smart City 263
8.3.4 Available Services 269
8.3.5 Specification 269
8.4 Impact of 5G Technology in IT, Big Data Analytics, and Cloud Computing
270
8.4.1 IoT Five-Layer Architecture for Smart City Applications 270
8.4.1.1 Sensing Layer (Get Information from Sensor) 272
8.4.1.2 Network Layer (Access and Also Transmit Information) 272
8.4.1.3 Data Storage and Analyzing 273
8.4.1.4 Smart Cities Model (Smart Industry Model, Smart Healthcare Model,
Smart Cities, Smart Agriculture Model) 273
8.4.1.5 Application Layer (Dedicated Apps and Services) 273
8.4.2 IoT Computing Paradigm for Smart City Application 274
8.5 Research Advancement and Drawback on Smart Cities 280
8.5.1 Integration of Cloud Computing in Smart Cities 280
8.5.2 Integration of Applications 281
8.5.3 System Security 281
8.6 Summary of Smart Cities and Future Research Challenges and Their
Guidelines 282
8.7 Conclusion and Future Direction 287
References 288
9 Indoor Air Quality (IAQ) in Green Buildings, a Pre-Requisite to Human
Health and Well-Being 293
Ankita Banerjee, N.P. Melkania and Ayushi Nain
9.1 Introduction 294
9.2 Pollutants Responsible for Poor IAQ 296
9.2.1 Volatile Organic Compounds (VOCs) 296
9.2.2 Particulate Matter (PM) 298
9.2.3 Asbestos 299
9.2.4 Carbon Monoxide (CO) 299
9.2.5 Environmental Tobacco Smoke (ETS) 300
9.2.6 Biological Pollutants 301
9.2.7 Lead (Pb) 303
9.2.8 Nitrogen Dioxide (NO2) 304
9.2.9 Ozone (O3) 305
9.3 Health Impacts of Poor IAQ 306
9.3.1 Sick Building Syndrome (SBS) 306
9.3.2 Acute Impacts 307
9.3.3 Chronic Impacts 308
9.4 Strategies to Maintain a Healthy Indoor Environment in Green Buildings
308
9.5 Conclusion and Future Scope 313
References 314
10 An Era of Internet of Things Leads to Smart Cities Initiatives Towards
Urbanization 319
Pooja Choudhary, Lava Bhargava, Ashok Kumar Suhag, Manju Choudhary and
Satendra Singh
10.1 Introduction: Emergence of a Smart City Concept 320
10.2 Components of Smart City 321
10.2.1 Smart Infrastructure 323
10.2.2 Smart Building 323
10.2.3 Smart Transportation 325
10.2.4 Smart Energy 326
10.2.5 Smart Health Care 327
10.2.6 Smart Technology 328
10.2.7 Smart Citizen 329
10.2.8 Smart Governance 330
10.2.9 Smart Education 330
10.3 Role of IoT in Smart Cities 331
10.3.1 Intent of IoT Adoption in Smart Cities 333
10.3.2 IoT-Supported Communication Technologies 333
10.4 Sectors, Services Related and Principal Issues for IoT Technologies
336
10.5 Impact of Smart Cities 336
10.5.1 Smart City Impact on Science and Technology 336
10.5.2 Smart City Impact on Competitiveness 339
10.5.3 Smart City Impact on Society 339
10.5.4 Smart City Impact on Optimization and Management 339
10.5.5 Smart City for Sustainable Development 340
10.6 Key Applications of IoT in Smart Cities 340
10.7 Challenges 343
10.7.1 Smart City Design Challenges 343
10.7.2 Challenges Raised by Smart Cities 344
10.7.3 Challenges of IoT Technologies in Smart Cities 344
10.8 Conclusion 346
Acknowledgements 346
References 346
11 Trip-I-Plan: A Mobile Application for Task Scheduling in Smart City's
Sustainable Infrastructure 351
Rajalakshmi Krishnamurthi, Dhanalekshmi Gopinathan and Adarsh Kumar
11.1 Introduction 352
11.2 Smart City and IoT 354
11.3 Mobile Computing for Smart City 357
11.4 Smart City and its Applications 360
11.4.1 Traffic Monitoring 360
11.4.2 Smart Lighting 361
11.4.3 Air Quality Monitoring 362
11.5 Smart Tourism in Smart City 363
11.6 Mobile Computing-Based Smart Tourism 366
11.7 Case Study: A Mobile Application for Trip Planner Task Scheduling in
Smart City's Sustainable Infrastructure 368
11.7.1 System Interfaces and User Interfaces 371
11.8 Experimentation and Results Discussion 371
11.9 Conclusion and Future Scope 373
References 374
12 Smart Health Monitoring for Elderly Care in Indoor Environments 379
Sonia and Tushar Semwal
12.1 Introduction 380
12.2 Sensors 382
12.2.1 Human Traits 383
12.2.2 Sensors Description 384
12.2.2.1 Passive Sensors 385
12.2.2.2 Active Sensors 386
12.2.3 Sensing Challenges 387
12.3 Internet of Things and Connected Systems 387
12.4 Applications 389
12.5 Case Study 392
12.5.1 Case 1 392
12.5.2 Case 2 393
12.5.3 Challenges Involved 393
12.5.4 Possible Solution 393
12.6 Conclusion 395
12.7 Discussion 395
References 395
13 A Comprehensive Study of IoT Security Risks in Building a Secure Smart
City 401
Akansha Bhargava, Gauri Salunkhe, Sushant Bhargava and Prerna Goswami
13.1 Introduction 402
13.1.1 Organization of the Chapter 404
13.2 Related Works 405
13.3 Overview of IoT System in Smart Cities 407
13.3.1 Physical Devices 409
13.3.2 Connectivity 409
13.3.3 Middleware 410
13.3.4 Human Interaction 410
13.4 IoT Security Prerequisite 411
13.5 IoT Security Areas 413
13.5.1 Anomaly Detection 413
13.5.2 Host-Based IDS (HIDS) 414
13.5.3 Network-Based IDS (NIDS) 414
13.5.4 Malware Detection 414
13.5.5 Ransomware Detection 415
13.5.6 Intruder Detection 415
13.5.7 Botnet Detection 415
13.6 IoT Security Threats 416
13.6.1 Passive Threats 416
13.6.2 Active Threats 417
13.7 Review of ML/DL Application in IoT Security 418
13.7.1 Machine Learning Methods 421
13.7.1.1 Decision Trees (DTs) 421
13.7.1.2 K-Nearest Neighbor (KNN) 423
13.7.1.3 Random Forest 424
13.7.1.4 Principal Component Analysis (PCA) 425
13.7.1.5 Naïve Bayes 425
13.7.1.6 Support Vector Machines (SVM) 425
13.7.2 Deep Learning Methods 426
13.7.2.1 Convolutional Neural Networks (CNNs) 427
13.7.2.2 Auto Encoder (AE) 429
13.7.2.3 Recurrent Neural Networks (RNNs) 429
13.7.2.4 Restricted Boltzmann Machines (RBMs) 432
13.7.2.5 Deep Belief Networks (DBNs) 433
13.7.2.6 Generative Adversarial Networks (GANs) 433
13.8 Challenges 434
13.8.1 IoT Dataset Unavailability 434
13.8.2 Computational Complications 434
13.8.3 Forensics Challenges 435
13.9 Future Prospects 436
13.9.1 Implementation of ML/DL With Edge Computing 437
13.9.2 Integration of ML/DL With Blockchain 438
13.9.3 Integration of ML/DL With Fog Computing 439
13.10 Conclusion 439
References 440
14 Role of Smart Buildings in Smart City-Components, Technology,
Indicators, Challenges, Future Research Opportunities 449
Tarana Singh, Arun Solanki and Sanjay Kumar Sharma
14.1 Introduction 449
14.1.1 Chapter Organization 453
14.2 Literature Review 453
14.3 Components of Smart Cities 455
14.3.1 Smart Infrastructure 455
14.3.2 Smart Parking Management 456
14.3.3 Connected Charging Stations 457
14.3.4 Smart Buildings and Properties 457
14.3.5 Smart Garden and Sprinkler Systems 457
14.3.6 Smart Heating and Ventilation 457
14.3.7 Smart Industrial Environment 458
14.3.8 Smart City Services 458
14.3.9 Smart Energy Management 458
14.3.10 Smart Water Management 459
14.3.11 Smart Waste Management 459
14.4 Characteristics of Smart Buildings 459
14.4.1 Minimal Human Control 459
14.4.2 Optimization 460
14.4.3 Qualities 460
14.4.4 Connected Systems 460
14.4.5 Use of Sensors 460
14.4.6 Automation 461
14.4.7 Data 461
14.5 Supporting Technology 461
14.5.1 Big Data and IoT in Smart Cities 461
14.5.2 Sensors 462
14.5.3 5G Connectivity 462
14.5.4 Geospatial Technology 462
14.5.5 Robotics 463
14.6 Key Performance Indicators of Smart City 463
14.6.1 Smart Economy 463
14.6.2 Smart Governance 464
14.6.3 Smart Mobility 464
14.6.4 Smart Environment 464
14.6.5 Smart People 464
14.6.6 Smart Living 465
14.7 Challenges While Working for Smart City 465
14.7.1 Retrofitting Existing Legacy City Infrastructure to Make it Smart
465
14.7.2 Financing Smart Cities 466
14.7.3 Availability of Master Plan or City Development Plan 466
14.7.4 Financial Sustainability of ULBs 466
14.7.5 Technical Constraints ULBs 466
14.7.6 Three-Tier Governance 467
14.7.7 Providing Clearances in a Timely Manner 467
14.7.8 Dealing With a Multivendor Environment 467
14.7.9 Capacity Building Program 467
14.7.10 Reliability of Utility Services 468
14.8 Future Research Opportunities in Smart City 468
14.8.1 IoT Management 468
14.8.2 Data Management 469
14.8.3 Smart City Assessment Framework 469
14.8.4 VANET Security 469
14.8.5 Improving Photovoltaic Cells 469
14.8.6 Smart City Enablers 470
14.8.7 Information System Risks 470
14.9 Conclusion 470
References 471
15 Effects of Green Buildings on the Environment 477
Ayushi Nain, Ankita Banerjee and N.P. Melkania
15.1 Introduction 478
15.2 Sustainability and the Building Industry 480
15.2.1 Environmental Benefits 481
15.2.2 Social Benefits 483
15.2.3 Economic Benefits 483
15.3 Goals of Green Buildings 484
15.3.1 Green Design 485
15.3.2 Energy Efficiency 485
15.3.3 Water Efficiency 487
15.3.4 Material Efficiency 489
15.3.5 Improved Internal Environment and Air Quality 490
15.3.6 Minimization of Wastes 492
15.3.7 Operations and Maintenance Optimization 492
15.4 Impacts of Classical Buildings that Green Buildings Seek to Rectify
493
15.4.1 Energy Use in Buildings 494
15.4.2 Green House Gas (GHG) Emissions 494
15.4.3 Indoor Air Quality 494
15.4.4 Building Water Use 496
15.4.5 Use of Land and Consumption 496
15.4.6 Construction Materials 497
15.4.7 Construction and Demolition (C&D) Wastes 498
15.5 Green Buildings in India 498
15.6 Conclusion 503
Acknowledgement 504
Acronyms 504
References 505
Index 509
1 The Use of Machine Learning for Sustainable and Resilient Buildings 1
Kuldeep Singh Kaswan and Jagjit Singh Dhatterwal
1.1 Introduction of ML Sustainable Resilient Building 2
1.2 Related Works 2
1.3 Machine Learning 5
1.4 What is Resilience? 6
1.4.1 Sustainability and Resiliency Conditions 7
1.4.2 Paradigm and Challenges of Sustainability and Resilience 7
1.4.3 Perspectives of Local Community 9
1.5 Sustainability and Resilience of Engineered System 12
1.5.1 Resilience and Sustainable Development Framework for Decision-Making
13
1.5.2 Exposures and Disturbance Events 15
1.5.3 Quantification of Resilience 15
1.5.4 Quantification of Sustainability 16
1.6 Community and Quantification Metrics, Resilience and Sustainability
Objectives 17
1.6.1 Definition of Quantification Metric 18
1.6.2 Considering and Community 19
1.7 Structure Engineering Dilemmas and Resilient Epcot 21
1.7.1 Dilation of Resilience Essence 21
1.7.2 Quality of Life 22
1.8 Development of Risk Informed Criteria for Building Design Hurricane
Resilient on Building 27
1.9 Resilient Infrastructures Against Earthquake and Tsunami Multi-Hazard
28
1.10 Machine Learning With Smart Building 29
1.10.1 Smart Building Appliances 29
1.10.2 Intelligent Tools, Cameras and Electronic Controls in a Connected
House (SRB) 29
1.10.3 Level if Clouds are the IoT Institute Level With SBs 31
1.10.4 Component of Smart Buildings (SB) 33
1.10.5 Machine Learning Tasks in Smart Building Environment 46
1.10.6 ML Tools and Services for Smart Building 47
1.10.7 Big Data Research Applications for SBs in Real-Time 51
1.10.8 Implementation of the ML Concept in the SB Context 51
1.11 Conclusion and Future Research 53
References 58
2 Fire Hazard Detection and Prediction by Machine Learning Techniques in
Smart Buildings (SBs) Using Sensors and Unmanned Aerial Vehicles (UAVs) 63
Sandhya Tarar and Namisha Bhasin
2.1 Introduction 64
2.1.1 Bluetooth 65
2.1.2 Unmanned Aerial Vehicle 65
2.1.3 Sensors 65
2.1.4 Problem Description 67
2.2 Literature Review 68
2.3 Experimental Methods 71
2.3.1 Univariate Time-Series 73
2.3.1.1 Naïve Bayes 74
2.3.1.2 Simple Average 74
2.3.1.3 Moving Average 75
2.3.1.4 Simple Exponential Smoothing (SES) 76
2.3.1.5 Holt's Linear Trend 76
2.3.1.6 Holt-Winters Method 76
2.3.1.7 Autoregressive Integrated Moving Average Model (ARIMA) 77
2.3.2 Multivariate Time-Series Prediction 80
2.3.2.1 Vector Autoregressive (VAR) 80
2.3.3 Hidden Markov Model (HMM) 81
2.3.4 Fuzzy Logic 85
2.4 Results 89
2.5 Conclusion and Future Work 89
References 90
3 Sustainable Infrastructure Theories and Models 97
Saurabh Jain, Keshav Kaushik, Deepak Kumar Sharma, Rajalakshmi
Krishnamurthi and Adarsh Kumar
3.1 Introduction to Data Fusion Approaches in Sustainable Infrastructure 98
3.1.1 The Need for Sustainable Infrastructure 98
3.1.2 Data Fusion 99
3.1.3 Different Types of Data Fusion Architecture 100
3.1.3.1 Centralized Architecture 100
3.1.3.2 Decentralized Architecture 101
3.1.3.3 Distributed Architecture 101
3.1.3.4 Hierarchical Architecture 102
3.1.4 Smart Cities Application With Sustainable Infrastructures Based on
Different Data Fusion Techniques 102
3.2 Smart City Infrastructure Approaches 104
3.2.1 Smart City Infrastructure 104
3.2.2 Smart City IoT Deployments 105
3.2.3 Smart City Control and Monitoring Centers 106
3.2.4 Theory of Unified City Modeling for Smart Infrastructure 108
3.2.5 Smart City Operational Modeling 109
3.3 Theories and Models 110
3.3.1 Sustainable Infrastructure Theories 110
3.3.2 Sustainable Infrastructure Models 112
3.4 Case Studies 113
3.4.1 Case Studies-1: Web Browsing History Analysis 113
3.4.1.1 Objective 115
3.4.2 Case Study-2: Data Model for Group Construction in Student's
Industrial Placement 117
3.5 Conclusion and Future Scope 121
References 122
4 Blockchain for Sustainable Smart Cities 127
Iftikhar Ahmad, Syeda Warda Ashar, Umamma Khalid, Anmol Irfan and Wajeeha
Khalil
4.1 Introduction 128
4.2 Smart City 130
4.2.1 Overview of Smart City 130
4.2.2 Evolution 130
4.2.3 Smart City's Sub Systems 130
4.2.4 Domains of Smart City 132
4.2.5 Challenges 134
4.3 Blockchain 136
4.3.1 Motivation 137
4.3.2 The Birth of Blockchain 137
4.3.3 System of Blockchain 137
4.4 Use Cases of Smart City Implementing Blockchain 138
4.4.1 Blockchain-Based Smart Economy 138
4.4.1.1 Facilitating Faster and Cheaper International Payment 139
4.4.1.2 Distributed Innovations in Financial Transactions 139
4.4.1.3 Enhancing the Transparency of Supply/Global Commodity Chains 140
4.4.1.4 Equity Crowd Funding 141
4.4.2 Blockchain for Smart People 141
4.4.2.1 Elections through Blockchain Technology 141
4.4.2.2 Smart Contract 143
4.4.2.3 Protecting Personal Data 144
4.4.2.4 E-Health: Storing Health Records on Blockchain 145
4.4.2.5 Intellectual Property Rights 145
4.4.2.6 Digital Payments 146
4.4.2.7 Other Use Cases 146
4.4.3 Blockchain-Based Smart Governance 147
4.4.3.1 Transparent Record Keeping and Tracking of Records 147
4.4.3.2 Fraud Free Voting 148
4.4.3.3 Decision Making 150
4.4.4 Blockchain-Based Smart Transport 150
4.4.4.1 Digitizing Driving License 150
4.4.4.2 Smart Ride Sharing 150
4.4.5 Blockchain-Based Smart Environment 151
4.4.5.1 Social Plastic 151
4.4.5.2 Energy 152
4.4.5.3 Environmental Treaties 152
4.4.5.4 Carbon Tax 153
4.4.6 Blockchain-Based Smart Living 153
4.4.6.1 Fighting Against Frauds and Discriminatory Policies and Practices
154
4.4.6.2 Managing Change in Ownership 154
4.4.6.3 Sustainable Buildings 154
4.4.6.4 Other Use Cases 155
4.5 Conclusion 156
References 156
5 Contextualizing Electronic Governance, Smart City Governance and
Sustainable Infrastructure in India: A Study and Framework 163
Nitin K. Tyagi and Mukta Goyal
5.1 Introduction 164
5.2 Related Works 166
5.2.1 Research Questions 166
5.3 Related E-Governance Frameworks 178
5.3.1 Smart City Features in India 181
5.4 Proposed Smart Governance Framework 181
5.5 Results Discussion 185
5.5.1 Initial Stage 185
5.5.2 Design, Development and Delivery Stage 186
5.6 Conclusion 186
References 188
6 Revolutionizing Geriatric Design in Developing Countries: IoT-Enabled
Smart Home Design for the Elderly 193
Shubhi Sonal and Anupadma R.
6.1 Introduction to Geriatric Design 194
6.1.1 Aim, Objectives, and Methodology 196
6.1.2 Organization of Chapter 197
6.2 Background 197
6.2.1 Development of Smart Homes 197
6.2.2 Development of Smart Homes for Elderly 198
6.2.3 Indian Scenario 200
6.3 Need for Smart Homes: An Assessment of Requirements for the
Elderly-Activity Mapping 201
6.3.1 Geriatric Smart Home Design: The Indian Context 202
6.3.2 Elderly Activity Mapping 202
6.3.3 Framework for Smart Homes for Elderly People 206
6.3.4 Architectural Interventions: Spatial Requirements for Daily
Activities 207
6.3.5 Architectural Interventions to Address Issues Faced by Elderly People
208
6.4 Schematic Design for a Nesting Home: IoT-Enabled Smart Home for Elderly
People 208
6.4.1 IoT-Based Real Time Automation for Nesting Homes 208
6.4.2 Technological Components of Elderly Smart Homes 212
6.4.2.1 Sensors for Smart Home 212
6.4.2.2 Health Monitoring System 213
6.4.2.3 Network Devices 213
6.4.2.4 Alerts 214
6.5 Worldwide Elderly Smart Homes 214
6.5.1 Challenges in Smart Elderly Homes 215
6.6 Conclusion and Future Scope 216
References 216
7 Sustainable E-Infrastructure for Blockchain-Based Voting System 221
Mukta Goyal and Adarsh Kumar
7.1 Introduction 222
7.1.1 E-Voting Challenge 224
7.2 Related Works 224
7.3 System Design 227
7.4 Experimentation 230
7.4.1 Software Requirements 230
7.4.2 Function Requirements 230
7.4.2.1 Election Organizer 231
7.4.2.2 Candidate Registration 231
7.4.2.3 Voter Registration Process 232
7.4.3 Common Functional Requirement for All Users 233
7.4.3.1 Result Display 233
7.4.4 Non-Function Requirements 233
7.4.4.1 Performance Requirement 233
7.4.4.2 Security Requirement 233
7.4.4.3 Usability Requirement 233
7.4.4.4 Availability Requirement 234
7.4.5 Implementation Details 234
7.5 Findings & Results 237
7.5.1 Smart Contract Deployment 241
7.6 Conclusion and Future Scope 242
Acknowledgement 246
References 246
8 Impact of IoT-Enabled Smart Cities: A Systematic Review and Challenges
253
K. Rajkumar and U. Hariharan
8.1 Introduction 254
8.2 Recent Development in IoT Application for Modern City 256
8.2.1 IoT Potential Smart City Approach 257
8.2.2 Problems and Related Solutions in Modern Smart Cities Application 259
8.3 Classification of IoT-Based Smart Cities 262
8.3.1 Program Developers 263
8.3.2 Network Type 263
8.3.3 Activities of Standardization Bodies of Smart City 263
8.3.4 Available Services 269
8.3.5 Specification 269
8.4 Impact of 5G Technology in IT, Big Data Analytics, and Cloud Computing
270
8.4.1 IoT Five-Layer Architecture for Smart City Applications 270
8.4.1.1 Sensing Layer (Get Information from Sensor) 272
8.4.1.2 Network Layer (Access and Also Transmit Information) 272
8.4.1.3 Data Storage and Analyzing 273
8.4.1.4 Smart Cities Model (Smart Industry Model, Smart Healthcare Model,
Smart Cities, Smart Agriculture Model) 273
8.4.1.5 Application Layer (Dedicated Apps and Services) 273
8.4.2 IoT Computing Paradigm for Smart City Application 274
8.5 Research Advancement and Drawback on Smart Cities 280
8.5.1 Integration of Cloud Computing in Smart Cities 280
8.5.2 Integration of Applications 281
8.5.3 System Security 281
8.6 Summary of Smart Cities and Future Research Challenges and Their
Guidelines 282
8.7 Conclusion and Future Direction 287
References 288
9 Indoor Air Quality (IAQ) in Green Buildings, a Pre-Requisite to Human
Health and Well-Being 293
Ankita Banerjee, N.P. Melkania and Ayushi Nain
9.1 Introduction 294
9.2 Pollutants Responsible for Poor IAQ 296
9.2.1 Volatile Organic Compounds (VOCs) 296
9.2.2 Particulate Matter (PM) 298
9.2.3 Asbestos 299
9.2.4 Carbon Monoxide (CO) 299
9.2.5 Environmental Tobacco Smoke (ETS) 300
9.2.6 Biological Pollutants 301
9.2.7 Lead (Pb) 303
9.2.8 Nitrogen Dioxide (NO2) 304
9.2.9 Ozone (O3) 305
9.3 Health Impacts of Poor IAQ 306
9.3.1 Sick Building Syndrome (SBS) 306
9.3.2 Acute Impacts 307
9.3.3 Chronic Impacts 308
9.4 Strategies to Maintain a Healthy Indoor Environment in Green Buildings
308
9.5 Conclusion and Future Scope 313
References 314
10 An Era of Internet of Things Leads to Smart Cities Initiatives Towards
Urbanization 319
Pooja Choudhary, Lava Bhargava, Ashok Kumar Suhag, Manju Choudhary and
Satendra Singh
10.1 Introduction: Emergence of a Smart City Concept 320
10.2 Components of Smart City 321
10.2.1 Smart Infrastructure 323
10.2.2 Smart Building 323
10.2.3 Smart Transportation 325
10.2.4 Smart Energy 326
10.2.5 Smart Health Care 327
10.2.6 Smart Technology 328
10.2.7 Smart Citizen 329
10.2.8 Smart Governance 330
10.2.9 Smart Education 330
10.3 Role of IoT in Smart Cities 331
10.3.1 Intent of IoT Adoption in Smart Cities 333
10.3.2 IoT-Supported Communication Technologies 333
10.4 Sectors, Services Related and Principal Issues for IoT Technologies
336
10.5 Impact of Smart Cities 336
10.5.1 Smart City Impact on Science and Technology 336
10.5.2 Smart City Impact on Competitiveness 339
10.5.3 Smart City Impact on Society 339
10.5.4 Smart City Impact on Optimization and Management 339
10.5.5 Smart City for Sustainable Development 340
10.6 Key Applications of IoT in Smart Cities 340
10.7 Challenges 343
10.7.1 Smart City Design Challenges 343
10.7.2 Challenges Raised by Smart Cities 344
10.7.3 Challenges of IoT Technologies in Smart Cities 344
10.8 Conclusion 346
Acknowledgements 346
References 346
11 Trip-I-Plan: A Mobile Application for Task Scheduling in Smart City's
Sustainable Infrastructure 351
Rajalakshmi Krishnamurthi, Dhanalekshmi Gopinathan and Adarsh Kumar
11.1 Introduction 352
11.2 Smart City and IoT 354
11.3 Mobile Computing for Smart City 357
11.4 Smart City and its Applications 360
11.4.1 Traffic Monitoring 360
11.4.2 Smart Lighting 361
11.4.3 Air Quality Monitoring 362
11.5 Smart Tourism in Smart City 363
11.6 Mobile Computing-Based Smart Tourism 366
11.7 Case Study: A Mobile Application for Trip Planner Task Scheduling in
Smart City's Sustainable Infrastructure 368
11.7.1 System Interfaces and User Interfaces 371
11.8 Experimentation and Results Discussion 371
11.9 Conclusion and Future Scope 373
References 374
12 Smart Health Monitoring for Elderly Care in Indoor Environments 379
Sonia and Tushar Semwal
12.1 Introduction 380
12.2 Sensors 382
12.2.1 Human Traits 383
12.2.2 Sensors Description 384
12.2.2.1 Passive Sensors 385
12.2.2.2 Active Sensors 386
12.2.3 Sensing Challenges 387
12.3 Internet of Things and Connected Systems 387
12.4 Applications 389
12.5 Case Study 392
12.5.1 Case 1 392
12.5.2 Case 2 393
12.5.3 Challenges Involved 393
12.5.4 Possible Solution 393
12.6 Conclusion 395
12.7 Discussion 395
References 395
13 A Comprehensive Study of IoT Security Risks in Building a Secure Smart
City 401
Akansha Bhargava, Gauri Salunkhe, Sushant Bhargava and Prerna Goswami
13.1 Introduction 402
13.1.1 Organization of the Chapter 404
13.2 Related Works 405
13.3 Overview of IoT System in Smart Cities 407
13.3.1 Physical Devices 409
13.3.2 Connectivity 409
13.3.3 Middleware 410
13.3.4 Human Interaction 410
13.4 IoT Security Prerequisite 411
13.5 IoT Security Areas 413
13.5.1 Anomaly Detection 413
13.5.2 Host-Based IDS (HIDS) 414
13.5.3 Network-Based IDS (NIDS) 414
13.5.4 Malware Detection 414
13.5.5 Ransomware Detection 415
13.5.6 Intruder Detection 415
13.5.7 Botnet Detection 415
13.6 IoT Security Threats 416
13.6.1 Passive Threats 416
13.6.2 Active Threats 417
13.7 Review of ML/DL Application in IoT Security 418
13.7.1 Machine Learning Methods 421
13.7.1.1 Decision Trees (DTs) 421
13.7.1.2 K-Nearest Neighbor (KNN) 423
13.7.1.3 Random Forest 424
13.7.1.4 Principal Component Analysis (PCA) 425
13.7.1.5 Naïve Bayes 425
13.7.1.6 Support Vector Machines (SVM) 425
13.7.2 Deep Learning Methods 426
13.7.2.1 Convolutional Neural Networks (CNNs) 427
13.7.2.2 Auto Encoder (AE) 429
13.7.2.3 Recurrent Neural Networks (RNNs) 429
13.7.2.4 Restricted Boltzmann Machines (RBMs) 432
13.7.2.5 Deep Belief Networks (DBNs) 433
13.7.2.6 Generative Adversarial Networks (GANs) 433
13.8 Challenges 434
13.8.1 IoT Dataset Unavailability 434
13.8.2 Computational Complications 434
13.8.3 Forensics Challenges 435
13.9 Future Prospects 436
13.9.1 Implementation of ML/DL With Edge Computing 437
13.9.2 Integration of ML/DL With Blockchain 438
13.9.3 Integration of ML/DL With Fog Computing 439
13.10 Conclusion 439
References 440
14 Role of Smart Buildings in Smart City-Components, Technology,
Indicators, Challenges, Future Research Opportunities 449
Tarana Singh, Arun Solanki and Sanjay Kumar Sharma
14.1 Introduction 449
14.1.1 Chapter Organization 453
14.2 Literature Review 453
14.3 Components of Smart Cities 455
14.3.1 Smart Infrastructure 455
14.3.2 Smart Parking Management 456
14.3.3 Connected Charging Stations 457
14.3.4 Smart Buildings and Properties 457
14.3.5 Smart Garden and Sprinkler Systems 457
14.3.6 Smart Heating and Ventilation 457
14.3.7 Smart Industrial Environment 458
14.3.8 Smart City Services 458
14.3.9 Smart Energy Management 458
14.3.10 Smart Water Management 459
14.3.11 Smart Waste Management 459
14.4 Characteristics of Smart Buildings 459
14.4.1 Minimal Human Control 459
14.4.2 Optimization 460
14.4.3 Qualities 460
14.4.4 Connected Systems 460
14.4.5 Use of Sensors 460
14.4.6 Automation 461
14.4.7 Data 461
14.5 Supporting Technology 461
14.5.1 Big Data and IoT in Smart Cities 461
14.5.2 Sensors 462
14.5.3 5G Connectivity 462
14.5.4 Geospatial Technology 462
14.5.5 Robotics 463
14.6 Key Performance Indicators of Smart City 463
14.6.1 Smart Economy 463
14.6.2 Smart Governance 464
14.6.3 Smart Mobility 464
14.6.4 Smart Environment 464
14.6.5 Smart People 464
14.6.6 Smart Living 465
14.7 Challenges While Working for Smart City 465
14.7.1 Retrofitting Existing Legacy City Infrastructure to Make it Smart
465
14.7.2 Financing Smart Cities 466
14.7.3 Availability of Master Plan or City Development Plan 466
14.7.4 Financial Sustainability of ULBs 466
14.7.5 Technical Constraints ULBs 466
14.7.6 Three-Tier Governance 467
14.7.7 Providing Clearances in a Timely Manner 467
14.7.8 Dealing With a Multivendor Environment 467
14.7.9 Capacity Building Program 467
14.7.10 Reliability of Utility Services 468
14.8 Future Research Opportunities in Smart City 468
14.8.1 IoT Management 468
14.8.2 Data Management 469
14.8.3 Smart City Assessment Framework 469
14.8.4 VANET Security 469
14.8.5 Improving Photovoltaic Cells 469
14.8.6 Smart City Enablers 470
14.8.7 Information System Risks 470
14.9 Conclusion 470
References 471
15 Effects of Green Buildings on the Environment 477
Ayushi Nain, Ankita Banerjee and N.P. Melkania
15.1 Introduction 478
15.2 Sustainability and the Building Industry 480
15.2.1 Environmental Benefits 481
15.2.2 Social Benefits 483
15.2.3 Economic Benefits 483
15.3 Goals of Green Buildings 484
15.3.1 Green Design 485
15.3.2 Energy Efficiency 485
15.3.3 Water Efficiency 487
15.3.4 Material Efficiency 489
15.3.5 Improved Internal Environment and Air Quality 490
15.3.6 Minimization of Wastes 492
15.3.7 Operations and Maintenance Optimization 492
15.4 Impacts of Classical Buildings that Green Buildings Seek to Rectify
493
15.4.1 Energy Use in Buildings 494
15.4.2 Green House Gas (GHG) Emissions 494
15.4.3 Indoor Air Quality 494
15.4.4 Building Water Use 496
15.4.5 Use of Land and Consumption 496
15.4.6 Construction Materials 497
15.4.7 Construction and Demolition (C&D) Wastes 498
15.5 Green Buildings in India 498
15.6 Conclusion 503
Acknowledgement 504
Acronyms 504
References 505
Index 509