R. Courant
Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
R. Courant
Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 14.66MB
Andere Kunden interessierten sich auch für
- J. Lucas M. BarbosaMinimal Surfaces in R 3 (eBook, PDF)19,95 €
- Ulrich DierkesMinimal Surfaces I (eBook, PDF)65,95 €
- W. H. Iii MeeksThe Global Theory of Minimal Surfaces in Flat Spaces (eBook, PDF)27,95 €
- Kichoon YangComplete Minimal Surfaces of Finite Total Curvature (eBook, PDF)73,95 €
- Kichoon YangComplete and Compact Minimal Surfaces (eBook, PDF)40,95 €
- Ulrich DierkesMinimal Surfaces II (eBook, PDF)65,95 €
- GiustiMinimal Surfaces and Functions of Bounded Variation (eBook, PDF)129,95 €
-
-
-
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 332
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461299172
- Artikelnr.: 43992797
- Verlag: Springer New York
- Seitenzahl: 332
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461299172
- Artikelnr.: 43992797
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I. Dirichlet's Principle and the Boundary Value Problem of Potential Theory.- 1. Dirichlet's Principle.- 2. Semicontinuity of Dirichlet's integral. Dirichlet's Principle for circular disk.- 3. Dirichlet's integral and quadratic functionals.- 4. Further preparation.- 5. Proof of Dirichlet's Principle for general domains.- 6. Alternative proof of Dirichlet's Principle.- 7. Conformal mapping of simply and doubly connected domains.- 8. Dirichlet's Principle for free boundary values. Natural boundary conditions.- II. Conformal Mapping on Parallel-Slit Domains.- 1. Introduction.- 2. Solution of variational problem II.- 3. Conformal mapping of plane domains on slit domains.- 4. Riemann domains.- 5. General Riemann domains. Uniformisation.- 6. Riemann domains defined by non-overlapping cells.- 7. Conformal mapping of domains not of genus zero.- III. Plateau's Problem.- 1. Introduction.- 2. Formulation and solution of basic variational problems.- 3. Proof by conformal mapping that solution is a minimal surface.- 4. First variation of Dirichlet's integral.- 5. Additional remarks.- 6. Unsolved problems.- 7. First variation and method of descent.- 8. Dependence of area on boundary.- IV. The General Problem of Douglas.- 1. Introduction.- 2. Solution of variational problem for k-fold connected domains.- 3. Further discussion of solution.- 4. Generalization to higher topological structure.- V. Conformal Mapping of Multiply Connected Domains.- 1. Introduction.- 2. Conformal mapping on circular domains.- 3. Mapping theorems for a general class of normal domains.- 4. Conformal mapping on Riemann surfaces bounded by unit circles.- 5. Uniqueness theorems.- 6. Supplementary remarks.- 7. Existence of solution for variational problem in two dimensions.- VI. MinimalSurfaces with Free Boundaries and Unstable Minimal Surfaces.- 1. Introduction.- 2. Free boundaries. Preparations.- 3. Minimal surfaces with partly free boundaries.- 4. Minimal surfaces spanning closed manifolds.- 5. Properties of the free boundary. Transversality.- 6. Unstable minimal surfaces with prescribed polygonal boundaries.- 7. Unstable minimal surfaces in rectifiable contours.- 8. Continuity of Dirichlet's integral under transformation of x-space.- Bibliography, Chapters I to VI.- 1. Green's function and boundary value problems.- Canonical conformal mappings.- Boundary value problems of second type and Neumann's function.- 2. Dirichlet integrals for harmonic functions.- Formal remarks..- Inequalities..- Conformal transformations.- An application to the theory of univalent functions.- Discontinuities of the kernels.- An eigenvalue problem.- Comparison theory.- An extremum problem in conformal mapping.- Mapping onto a circular domain.- Orthornormal systems.- 3. Variation of the Green's function.- Hadamard's variation formula.- Interior variations.- Application to the coefficient problem for univalent functions.- Boundary variations.- Lavrentieff's method.- Method of extremal length.- Concluding remarks.- Bibliography to Appendix.- Supplementary Notes (1977).
I. Dirichlet's Principle and the Boundary Value Problem of Potential Theory.- 1. Dirichlet's Principle.- 2. Semicontinuity of Dirichlet's integral. Dirichlet's Principle for circular disk.- 3. Dirichlet's integral and quadratic functionals.- 4. Further preparation.- 5. Proof of Dirichlet's Principle for general domains.- 6. Alternative proof of Dirichlet's Principle.- 7. Conformal mapping of simply and doubly connected domains.- 8. Dirichlet's Principle for free boundary values. Natural boundary conditions.- II. Conformal Mapping on Parallel-Slit Domains.- 1. Introduction.- 2. Solution of variational problem II.- 3. Conformal mapping of plane domains on slit domains.- 4. Riemann domains.- 5. General Riemann domains. Uniformisation.- 6. Riemann domains defined by non-overlapping cells.- 7. Conformal mapping of domains not of genus zero.- III. Plateau's Problem.- 1. Introduction.- 2. Formulation and solution of basic variational problems.- 3. Proof by conformal mapping that solution is a minimal surface.- 4. First variation of Dirichlet's integral.- 5. Additional remarks.- 6. Unsolved problems.- 7. First variation and method of descent.- 8. Dependence of area on boundary.- IV. The General Problem of Douglas.- 1. Introduction.- 2. Solution of variational problem for k-fold connected domains.- 3. Further discussion of solution.- 4. Generalization to higher topological structure.- V. Conformal Mapping of Multiply Connected Domains.- 1. Introduction.- 2. Conformal mapping on circular domains.- 3. Mapping theorems for a general class of normal domains.- 4. Conformal mapping on Riemann surfaces bounded by unit circles.- 5. Uniqueness theorems.- 6. Supplementary remarks.- 7. Existence of solution for variational problem in two dimensions.- VI. MinimalSurfaces with Free Boundaries and Unstable Minimal Surfaces.- 1. Introduction.- 2. Free boundaries. Preparations.- 3. Minimal surfaces with partly free boundaries.- 4. Minimal surfaces spanning closed manifolds.- 5. Properties of the free boundary. Transversality.- 6. Unstable minimal surfaces with prescribed polygonal boundaries.- 7. Unstable minimal surfaces in rectifiable contours.- 8. Continuity of Dirichlet's integral under transformation of x-space.- Bibliography, Chapters I to VI.- 1. Green's function and boundary value problems.- Canonical conformal mappings.- Boundary value problems of second type and Neumann's function.- 2. Dirichlet integrals for harmonic functions.- Formal remarks..- Inequalities..- Conformal transformations.- An application to the theory of univalent functions.- Discontinuities of the kernels.- An eigenvalue problem.- Comparison theory.- An extremum problem in conformal mapping.- Mapping onto a circular domain.- Orthornormal systems.- 3. Variation of the Green's function.- Hadamard's variation formula.- Interior variations.- Application to the coefficient problem for univalent functions.- Boundary variations.- Lavrentieff's method.- Method of extremal length.- Concluding remarks.- Bibliography to Appendix.- Supplementary Notes (1977).