83,95 €
83,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
42 °P sammeln
83,95 €
83,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
42 °P sammeln
Als Download kaufen
83,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
42 °P sammeln
Jetzt verschenken
83,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
42 °P sammeln
  • Format: ePub3 enhanced

Discharge in Long Air Gaps: Modelling and applications presents self-consistent predictive dynamic models of positive and negative discharges in long air gaps. Equivalent models are also derived to predict lightning parameters based on the similarities between long air gap discharges and lightning flashes. Macroscopic air gap discharge parameters are calculated to solve electrical, empirical and physical equations, and comparisons between computed and experimental results for various test configurations are presented and discussed. This book is intended to provide a fresh perspective by…mehr

  • Geräte: Tablets / Webreader
  • ohne Kopierschutz
  • eBook Hilfe
Produktbeschreibung
Discharge in Long Air Gaps: Modelling and applications presents self-consistent predictive dynamic models of positive and negative discharges in long air gaps. Equivalent models are also derived to predict lightning parameters based on the similarities between long air gap discharges and lightning flashes. Macroscopic air gap discharge parameters are calculated to solve electrical, empirical and physical equations, and comparisons between computed and experimental results for various test configurations are presented and discussed. This book is intended to provide a fresh perspective by contributing an innovative approach to this research domain, and universities with programs in high-voltage engineering will find this volume to be a working example of how to introduce the basics of electric discharge phenomena.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

Autorenporträt
Abderrahmane Beroual is a distinguished full Professor at University of Lyon in the Ecole Centrale de Lyon, France. His research has made a substantial contribution to long air gaps discharge and lightning, outdoor insulation, modelling of discharges and composite materials, pre-breakdown and breakdown phenomena in dielectric fluids and solid/fluid interfaces. He was elected IEEE fellow in 2011 for his contribution to processes of pre-breakdown and breakdown in dielectric liquids.

Issouf Fofana is chair professor at the Université du Québec à Chicoutimi (UQAC) and Director of the Modeling and Diagnostic of Power Network Equipment (MODELE) laboratory. He is actively involved with teaching and research in the area of high-voltage engineering with emphases on the insulation diagnostic/modelling relevant to power equipment.