15th International Conference, DS 2012, Lyon, France, October 29-31, 2012, Proceedings Redaktion: Ganascia, Jean-Gabriel; Petit, Jean-Marc; Lenca, Philippe
15th International Conference, DS 2012, Lyon, France, October 29-31, 2012, Proceedings Redaktion: Ganascia, Jean-Gabriel; Petit, Jean-Marc; Lenca, Philippe
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the 15th International Conference on Discovery Science, DS 2012, held in Lyon, France, in October 2012. The 22 papers presented in this volume were carefully reviewed and selected from 46 submissions. The field of discovery science aims at inducing and validating new scientific hypotheses from data. The scope of this conference includes the development and analysis of methods for automatic scientific knowledge discovery, machine learning, intelligent data analysis, theory of learning, tools for supporting the human process of discovery in science, as well as their application to knowledge discovery.…mehr
This book constitutes the refereed proceedings of the 15th International Conference on Discovery Science, DS 2012, held in Lyon, France, in October 2012. The 22 papers presented in this volume were carefully reviewed and selected from 46 submissions. The field of discovery science aims at inducing and validating new scientific hypotheses from data. The scope of this conference includes the development and analysis of methods for automatic scientific knowledge discovery, machine learning, intelligent data analysis, theory of learning, tools for supporting the human process of discovery in science, as well as their application to knowledge discovery.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Declarative Modeling for Machine Learning and Data Mining.- Recent Developments in Pattern Mining.- Exploring Sequential Data.- Large Scale Spectral Clustering Using Resistance Distance andSpielman-Teng Solvers.- Prediction of Quantiles by Statistical Learning and Application toGDP Forecasting.- Policy Search in a Space of Simple Closed-form Formulas: TowardsInterpretability of Reinforcement Learning.- Towards Finding Relational Redescriptions.- Descriptive Modeling of Systemic Banking Crises.- A Trim Distance between Positions in Nucleotide Sequences.- Data Squashing for HSV Subimages by an Autonomous MobileRobot.- Cohesive Co-evolution Patterns in Dynamic Attributed Graphs.-Efficient Redundancy Reduced Subgroup Discovery via QuadraticProgramming.- HCAC: Semi-supervised Hierarchical Clustering Using Confidence-Based Active Learning.- LF-CARS: A Loose Fragment-Based Consensus Clustering Algorithmwith a Robust Similarity.- Fast Approximation Algorithm for the 1-Median Problem.- Online Co-regularized Algorithms.- Fast Progressive Training of Mixture Models for Model Selection.- Including Spatial Relations and Scales within Sequential PatternExtraction.- Predicting Ramp Events with a Stream-Based HMM Framework.- Burst Detection in a Sequence of Tweets Based on InformationDiffusion Model.- Error-Correcting Output Codes as a Transformation from Multi-Classto Multi-Label Prediction.- An Assessment on Loan Performance from Combined Quantitative andQualitative Data in XML.- Structural Change Pattern Mining Based on Constrained Maximalk-Plex Search.- Enhancing Patent Expertise through Automatic Matching withScientific Papers.- Soft Threshold Constraints for Pattern Mining.
Declarative Modeling for Machine Learning and Data Mining.- Recent Developments in Pattern Mining.- Exploring Sequential Data.- Large Scale Spectral Clustering Using Resistance Distance andSpielman-Teng Solvers.- Prediction of Quantiles by Statistical Learning and Application toGDP Forecasting.- Policy Search in a Space of Simple Closed-form Formulas: TowardsInterpretability of Reinforcement Learning.- Towards Finding Relational Redescriptions.- Descriptive Modeling of Systemic Banking Crises.- A Trim Distance between Positions in Nucleotide Sequences.- Data Squashing for HSV Subimages by an Autonomous MobileRobot.- Cohesive Co-evolution Patterns in Dynamic Attributed Graphs.-Efficient Redundancy Reduced Subgroup Discovery via QuadraticProgramming.- HCAC: Semi-supervised Hierarchical Clustering Using Confidence-Based Active Learning.- LF-CARS: A Loose Fragment-Based Consensus Clustering Algorithmwith a Robust Similarity.- Fast Approximation Algorithm for the 1-Median Problem.- Online Co-regularized Algorithms.- Fast Progressive Training of Mixture Models for Model Selection.- Including Spatial Relations and Scales within Sequential PatternExtraction.- Predicting Ramp Events with a Stream-Based HMM Framework.- Burst Detection in a Sequence of Tweets Based on InformationDiffusion Model.- Error-Correcting Output Codes as a Transformation from Multi-Classto Multi-Label Prediction.- An Assessment on Loan Performance from Combined Quantitative andQualitative Data in XML.- Structural Change Pattern Mining Based on Constrained Maximalk-Plex Search.- Enhancing Patent Expertise through Automatic Matching withScientific Papers.- Soft Threshold Constraints for Pattern Mining.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826