This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, and classical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte-Yudin-Levenshtein linear programming methods for lower bounding energy, a thorough treatment of Cohn-Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures for Chebyshev (polarization) problems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"The book is mostly self-contained and has been written with graduate students in mind. ... The reviewer certainly thinks that this book has the potential to become a standard text for students new to the rich and vibrant area of discrete energy problems and point configurations and a valuable resource for researchers." (Johann S. Brauchart, Mathematical Reviews, April, 2021)
"The authors have done an excellent work by taking the reader, who is primarily supposed to be a graduate student, from the basics of Real Analysis to the frontiers of research on several mathematical topics, what turns the text of interest for both students and research professionals. The vast content of the book will certainly provide the reader with an extremely valuable source on this fascinating subject." (Antonio Roberto da Silva, zbMATH 1437.41002, 2020)