Discrete Fourier Analysis and Wavelets (eBook, ePUB)
Applications to Signal and Image Processing
Alle Infos zum eBook verschenken
Discrete Fourier Analysis and Wavelets (eBook, ePUB)
Applications to Signal and Image Processing
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Delivers an appropriate mix of theory and applications to help readers understand the process and problems of image and signal analysis Maintaining a comprehensive and accessible treatment of the concepts, methods, and applications of signal and image data transformation, this Second Edition of Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing features updated and revised coverage throughout with an emphasis on key and recent developments in the field of signal and image processing. Topical coverage includes: vector spaces, signals, and images; the discrete…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 31.38MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Jossey-Bass
- Seitenzahl: 464
- Erscheinungstermin: 3. April 2018
- Englisch
- ISBN-13: 9781119258247
- Artikelnr.: 57005862
- Verlag: Jossey-Bass
- Seitenzahl: 464
- Erscheinungstermin: 3. April 2018
- Englisch
- ISBN-13: 9781119258247
- Artikelnr.: 57005862
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
) and L2(
) 158 4.5.1.1 The Inner Product Space L2(
) 158 4.5.1.2 The Inner Product Space L2(
) 159 4.5.2 Fourier Analysis in L2(
) and L2(
) 160 4.5.2.1 The Discrete Time Fourier Transform in L2(
) 160 4.5.2.2 Aliasing and the Nyquist Frequency in L2(
) 161 4.5.2.3 The Fourier Transform on L2(
)) 163 4.5.3 Convolution and Filtering in L2(
) and L2(
) 163 4.5.3.1 The Convolution Theorem 164 4.5.4 The z-Transform 166 4.5.4.1 Two Points of View 166 4.5.4.2 Algebra of z-Transforms; Convolution 167 4.5.5 Convolution in
N versus L2(
) 168 4.5.5.1 Some Notation 168 4.5.5.2 Circular Convolution and z-Transforms 169 4.5.5.3 Convolution in
N from Convolution in L2(
) 170 4.5.6 Some Filter Terminology 171 4.5.7 The Space L2(
×
) 172 4.6 Matlab Project 172 4.6.1 Basic Convolution and Filtering 172 4.6.2 Audio Signals and Noise Removal 174 4.6.3 Filtering Images 175 Exercises 176 5 Windowing and Localization 185 5.1 Overview: Nonlocality of the DFT 185 5.2 Localization via Windowing 187 5.2.1 Windowing 187 5.2.2 Analysis of Windowing 188 5.2.2.1 Step 1: Relation of X and Y 189 5.2.2.2 Step 2: Effect of Index Shift 190 5.2.2.3 Step 3: N-Point versus M-Point DFT 191 5.2.3 Spectrograms 192 5.2.4 Other Types of Windows 196 5.3 Matlab Project 198 5.3.1 Windows 198 5.3.2 Spectrograms 199 Exercises 200 6 Frames 205 6.1 Introduction 205 6.2 Packet Loss 205 6.3 Frames-Using more Dot Products 208 6.4 Analysis and Synthesis with Frames 211 6.4.1 Analysis and Synthesis 211 6.4.2 Dual Frame and Perfect Reconstruction 213 6.4.3 Partial Reconstruction 214 6.4.4 Other Dual Frames 215 6.4.5 Numerical Concerns 216 6.4.5.1 Condition Number of a Matrix 217 6.5 Initial Examples of Frames 218 6.5.1 Circular Frames in
2 218 6.5.2 Extended DFT Frames and Harmonic Frames 219 6.5.3 Canonical Tight Frame 221 6.5.4 Frames for Images 222 6.6 More on the Frame Operator 222 6.7 Group-Based Frames 225 6.7.1 Unitary Matrix Groups and Frames 225 6.7.2 Initial Examples of Group Frames 228 6.7.2.1 Platonic Frames 228 6.7.2.2 Symmetric Group Frames 230 6.7.2.3 Harmonic Frames 232 6.7.3 Gabor Frames 232 6.7.3.1 Flipped Gabor Frame 237 6.8 Frame Applications 237 6.8.1 Packet Loss 239 6.8.2 Redundancy and other duals 240 6.8.3 Spectrogram 241 6.9 Matlab Project 242 6.9.1 Frames and Frame Operator 243 6.9.2 Analysis and Synthesis 245 6.9.3 Condition Number 246 6.9.4 Packet Loss 246 6.9.5 Gabor Frames 246 Exercises 247 7 Filter Banks 251 7.1 Overview 251 7.2 The Haar Filter Bank 252 7.2.1 The One-Stage Two-Channel Filter Bank 252 7.2.2 Inverting the One-stage Transform 256 7.2.3 Summary of Filter Bank Operation 257 7.3 The General One-stage Two-channel Filter Bank 260 7.3.1 Formulation for Arbitrary FIR Filters 260 7.3.2 Perfect Reconstruction 261 7.3.3 Orthogonal Filter Banks 263 7.4 Multistage Filter Banks 264 7.5 Filter Banks for Finite Length Signals 267 7.5.1 Extension Strategy 267 7.5.2 Analysis of Periodic Extension 269 7.5.2.1 Adapting the Analysis Transform to Finite Length 270 7.5.2.2 Adapting the Synthesis Transform to Finite Length 272 7.5.2.3 Other Extensions 274 7.5.3 Matrix Formulation of the Periodic Case 274 7.5.4 Multistage Transforms 275 7.5.4.1 Iterating the One-stage Transform 275 7.5.4.2 Matrix Formulation of Multistage Transform 277 7.5.4.3 Reconstruction from Approximation Coefficients 278 7.5.5 Matlab Implementation of Discrete Wavelet Transforms 281 7.6 The 2D Discrete Wavelet Transform and JPEG 2000 281 7.6.1 Two-dimensional Transforms 281 7.6.2 Multistage Transforms for Two-dimensional Images 282 7.6.3 Approximations and Details for Images 286 7.6.4 JPEG 2000 288 7.7 Filter Design 289 7.7.1 Filter Banks in the z-domain 290 7.7.1.1 Downsampling and Upsampling in the z-domain 290 7.7.1.2 Filtering in the Frequency Domain 290 7.7.2 Perfect Reconstruction in the z-frequency Domain 290 7.7.3 Filter Design I: Synthesis from Analysis 292 7.7.4 Filter Design II: Product Filters 295 7.7.5 Filter Design III: More Product Filters 297 7.7.6 Orthogonal Filter Banks 299 7.7.6.1 Design Equations for an Orthogonal Bank 299 7.7.6.2 The Product Filter in the Orthogonal Case 300 7.7.6.3 Restrictions on P(z); Spectral Factorization 301 7.7.6.4 Daubechies Filters 301 7.8 Matlab Project 303 7.8.1 Basics 303 7.8.2 Audio Signals 304 7.8.3 Images 305 7.9 Alternate Matlab Project 306 7.9.1 Basics 306 7.9.2 Audio Signals 307 7.9.3 Images 307 Exercises 309 8 Lifting for Filter Banks and Wavelets 319 8.1 Overview 319 8.2 Lifting for the Haar Filter Bank 319 8.2.1 The Polyphase Analysis 320 8.2.2 Inverting the Polyphase Haar Transform 321 8.2.3 Lifting Decomposition for the Haar Transform 322 8.2.4 Inverting the Lifted Haar Transform 324 8.3 The Lifting Theorem 324 8.3.1 A Few Facts About Laurent Polynomials 325 8.3.1.1 The Width of a Laurent Polynomial 325 8.3.1.2 The Division Algorithm 325 8.3.2 The Lifting Theorem 326 8.4 Polyphase Analysis for Filter Banks 330 8.4.1 The Polyphase Decomposition and Convolution 331 8.4.2 The Polyphase Analysis Matrix 333 8.4.3 Inverting the Transform 334 8.4.4 Orthogonal Filters 338 8.5 Lifting 339 8.5.1 Relation Between the Polyphase Matrices 339 8.5.2 Factoring the Le Gall 5/3 Polyphase Matrix 341 8.5.3 Factoring the Haar Polyphase Matrix 343 8.5.4 Efficiency 345 8.5.5 Lifting to Design Transforms 346 8.6 Matlab Project 351 8.6.1 Laurent Polynomials 351 8.6.2 Lifting for CDF(2,2) 354 8.6.3 Lifting the D4 Filter Bank 356 Exercises 356 9 Wavelets 361 9.1 Overview 361 9.1.1 Chapter Outline 361 9.1.2 Continuous from Discrete 361 9.2 The Haar Basis 363 9.2.1 Haar Functions as a Basis for L2(0, 1) 364 9.2.1.1 Haar Function Definition and Graphs 364 9.2.1.2 Orthogonality 367 9.2.1.3 Completeness in L2(0, 1) 368 9.2.2 Haar Functions as an Orthonormal Basis for L2(
) 372 9.2.3 Projections and Approximations 374 9.3 Haar Wavelets Versus the Haar Filter Bank 376 9.3.1 Single-stage Case 377 9.3.1.1 Functions from Sequences 377 9.3.1.2 Filter Bank Analysis/Synthesis 377 9.3.1.3 Haar Expansion and Filter Bank Parallels 378 9.3.2 Multistage Haar Filter Bank and Multiresolution 380 9.3.2.1 Some Subspaces and Bases 381 9.3.2.2 Multiresolution and Orthogonal Decomposition 381 9.3.2.3 Direct Sums 382 9.3.2.4 Connection to Multistage Haar Filter Banks 384 9.4 Orthogonal Wavelets 386 9.4.1 Essential Ingredients 386 9.4.2 Constructing a Multiresolution Analysis: The Dilation Equation 387 9.4.3 Connection to Orthogonal Filters 389 9.4.4 Computing the Scaling Function 390 9.4.5 Scaling Function Existence and Properties 394 9.4.5.1 Fixed Point Iteration and the Cascade Algorithm 394 9.4.5.2 Existence of the Scaling Function 395 9.4.5.3 The Support of the Scaling Function 397 9.4.5.4 Back to Multiresolution 399 9.4.6 Wavelets 399 9.4.7 Wavelets and the Multiresolution Analysis 404 9.4.7.1 Final Remarks on Orthogonal Wavelets 406 9.5 Biorthogonal Wavelets 407 9.5.1 Biorthogonal Scaling Functions 408 9.5.2 Biorthogonal Wavelets 409 9.5.3 Decomposition of L2(
) 409 9.6 Matlab Project 411 9.6.1 Orthogonal Wavelets 411 9.6.2 Biorthogonal Wavelets 414 Exercises 414 Bibliography 421 Appendix: Solutions to Exercises 423 Index 439
) and L2(
) 158 4.5.1.1 The Inner Product Space L2(
) 158 4.5.1.2 The Inner Product Space L2(
) 159 4.5.2 Fourier Analysis in L2(
) and L2(
) 160 4.5.2.1 The Discrete Time Fourier Transform in L2(
) 160 4.5.2.2 Aliasing and the Nyquist Frequency in L2(
) 161 4.5.2.3 The Fourier Transform on L2(
)) 163 4.5.3 Convolution and Filtering in L2(
) and L2(
) 163 4.5.3.1 The Convolution Theorem 164 4.5.4 The z-Transform 166 4.5.4.1 Two Points of View 166 4.5.4.2 Algebra of z-Transforms; Convolution 167 4.5.5 Convolution in
N versus L2(
) 168 4.5.5.1 Some Notation 168 4.5.5.2 Circular Convolution and z-Transforms 169 4.5.5.3 Convolution in
N from Convolution in L2(
) 170 4.5.6 Some Filter Terminology 171 4.5.7 The Space L2(
×
) 172 4.6 Matlab Project 172 4.6.1 Basic Convolution and Filtering 172 4.6.2 Audio Signals and Noise Removal 174 4.6.3 Filtering Images 175 Exercises 176 5 Windowing and Localization 185 5.1 Overview: Nonlocality of the DFT 185 5.2 Localization via Windowing 187 5.2.1 Windowing 187 5.2.2 Analysis of Windowing 188 5.2.2.1 Step 1: Relation of X and Y 189 5.2.2.2 Step 2: Effect of Index Shift 190 5.2.2.3 Step 3: N-Point versus M-Point DFT 191 5.2.3 Spectrograms 192 5.2.4 Other Types of Windows 196 5.3 Matlab Project 198 5.3.1 Windows 198 5.3.2 Spectrograms 199 Exercises 200 6 Frames 205 6.1 Introduction 205 6.2 Packet Loss 205 6.3 Frames-Using more Dot Products 208 6.4 Analysis and Synthesis with Frames 211 6.4.1 Analysis and Synthesis 211 6.4.2 Dual Frame and Perfect Reconstruction 213 6.4.3 Partial Reconstruction 214 6.4.4 Other Dual Frames 215 6.4.5 Numerical Concerns 216 6.4.5.1 Condition Number of a Matrix 217 6.5 Initial Examples of Frames 218 6.5.1 Circular Frames in
2 218 6.5.2 Extended DFT Frames and Harmonic Frames 219 6.5.3 Canonical Tight Frame 221 6.5.4 Frames for Images 222 6.6 More on the Frame Operator 222 6.7 Group-Based Frames 225 6.7.1 Unitary Matrix Groups and Frames 225 6.7.2 Initial Examples of Group Frames 228 6.7.2.1 Platonic Frames 228 6.7.2.2 Symmetric Group Frames 230 6.7.2.3 Harmonic Frames 232 6.7.3 Gabor Frames 232 6.7.3.1 Flipped Gabor Frame 237 6.8 Frame Applications 237 6.8.1 Packet Loss 239 6.8.2 Redundancy and other duals 240 6.8.3 Spectrogram 241 6.9 Matlab Project 242 6.9.1 Frames and Frame Operator 243 6.9.2 Analysis and Synthesis 245 6.9.3 Condition Number 246 6.9.4 Packet Loss 246 6.9.5 Gabor Frames 246 Exercises 247 7 Filter Banks 251 7.1 Overview 251 7.2 The Haar Filter Bank 252 7.2.1 The One-Stage Two-Channel Filter Bank 252 7.2.2 Inverting the One-stage Transform 256 7.2.3 Summary of Filter Bank Operation 257 7.3 The General One-stage Two-channel Filter Bank 260 7.3.1 Formulation for Arbitrary FIR Filters 260 7.3.2 Perfect Reconstruction 261 7.3.3 Orthogonal Filter Banks 263 7.4 Multistage Filter Banks 264 7.5 Filter Banks for Finite Length Signals 267 7.5.1 Extension Strategy 267 7.5.2 Analysis of Periodic Extension 269 7.5.2.1 Adapting the Analysis Transform to Finite Length 270 7.5.2.2 Adapting the Synthesis Transform to Finite Length 272 7.5.2.3 Other Extensions 274 7.5.3 Matrix Formulation of the Periodic Case 274 7.5.4 Multistage Transforms 275 7.5.4.1 Iterating the One-stage Transform 275 7.5.4.2 Matrix Formulation of Multistage Transform 277 7.5.4.3 Reconstruction from Approximation Coefficients 278 7.5.5 Matlab Implementation of Discrete Wavelet Transforms 281 7.6 The 2D Discrete Wavelet Transform and JPEG 2000 281 7.6.1 Two-dimensional Transforms 281 7.6.2 Multistage Transforms for Two-dimensional Images 282 7.6.3 Approximations and Details for Images 286 7.6.4 JPEG 2000 288 7.7 Filter Design 289 7.7.1 Filter Banks in the z-domain 290 7.7.1.1 Downsampling and Upsampling in the z-domain 290 7.7.1.2 Filtering in the Frequency Domain 290 7.7.2 Perfect Reconstruction in the z-frequency Domain 290 7.7.3 Filter Design I: Synthesis from Analysis 292 7.7.4 Filter Design II: Product Filters 295 7.7.5 Filter Design III: More Product Filters 297 7.7.6 Orthogonal Filter Banks 299 7.7.6.1 Design Equations for an Orthogonal Bank 299 7.7.6.2 The Product Filter in the Orthogonal Case 300 7.7.6.3 Restrictions on P(z); Spectral Factorization 301 7.7.6.4 Daubechies Filters 301 7.8 Matlab Project 303 7.8.1 Basics 303 7.8.2 Audio Signals 304 7.8.3 Images 305 7.9 Alternate Matlab Project 306 7.9.1 Basics 306 7.9.2 Audio Signals 307 7.9.3 Images 307 Exercises 309 8 Lifting for Filter Banks and Wavelets 319 8.1 Overview 319 8.2 Lifting for the Haar Filter Bank 319 8.2.1 The Polyphase Analysis 320 8.2.2 Inverting the Polyphase Haar Transform 321 8.2.3 Lifting Decomposition for the Haar Transform 322 8.2.4 Inverting the Lifted Haar Transform 324 8.3 The Lifting Theorem 324 8.3.1 A Few Facts About Laurent Polynomials 325 8.3.1.1 The Width of a Laurent Polynomial 325 8.3.1.2 The Division Algorithm 325 8.3.2 The Lifting Theorem 326 8.4 Polyphase Analysis for Filter Banks 330 8.4.1 The Polyphase Decomposition and Convolution 331 8.4.2 The Polyphase Analysis Matrix 333 8.4.3 Inverting the Transform 334 8.4.4 Orthogonal Filters 338 8.5 Lifting 339 8.5.1 Relation Between the Polyphase Matrices 339 8.5.2 Factoring the Le Gall 5/3 Polyphase Matrix 341 8.5.3 Factoring the Haar Polyphase Matrix 343 8.5.4 Efficiency 345 8.5.5 Lifting to Design Transforms 346 8.6 Matlab Project 351 8.6.1 Laurent Polynomials 351 8.6.2 Lifting for CDF(2,2) 354 8.6.3 Lifting the D4 Filter Bank 356 Exercises 356 9 Wavelets 361 9.1 Overview 361 9.1.1 Chapter Outline 361 9.1.2 Continuous from Discrete 361 9.2 The Haar Basis 363 9.2.1 Haar Functions as a Basis for L2(0, 1) 364 9.2.1.1 Haar Function Definition and Graphs 364 9.2.1.2 Orthogonality 367 9.2.1.3 Completeness in L2(0, 1) 368 9.2.2 Haar Functions as an Orthonormal Basis for L2(
) 372 9.2.3 Projections and Approximations 374 9.3 Haar Wavelets Versus the Haar Filter Bank 376 9.3.1 Single-stage Case 377 9.3.1.1 Functions from Sequences 377 9.3.1.2 Filter Bank Analysis/Synthesis 377 9.3.1.3 Haar Expansion and Filter Bank Parallels 378 9.3.2 Multistage Haar Filter Bank and Multiresolution 380 9.3.2.1 Some Subspaces and Bases 381 9.3.2.2 Multiresolution and Orthogonal Decomposition 381 9.3.2.3 Direct Sums 382 9.3.2.4 Connection to Multistage Haar Filter Banks 384 9.4 Orthogonal Wavelets 386 9.4.1 Essential Ingredients 386 9.4.2 Constructing a Multiresolution Analysis: The Dilation Equation 387 9.4.3 Connection to Orthogonal Filters 389 9.4.4 Computing the Scaling Function 390 9.4.5 Scaling Function Existence and Properties 394 9.4.5.1 Fixed Point Iteration and the Cascade Algorithm 394 9.4.5.2 Existence of the Scaling Function 395 9.4.5.3 The Support of the Scaling Function 397 9.4.5.4 Back to Multiresolution 399 9.4.6 Wavelets 399 9.4.7 Wavelets and the Multiresolution Analysis 404 9.4.7.1 Final Remarks on Orthogonal Wavelets 406 9.5 Biorthogonal Wavelets 407 9.5.1 Biorthogonal Scaling Functions 408 9.5.2 Biorthogonal Wavelets 409 9.5.3 Decomposition of L2(
) 409 9.6 Matlab Project 411 9.6.1 Orthogonal Wavelets 411 9.6.2 Biorthogonal Wavelets 414 Exercises 414 Bibliography 421 Appendix: Solutions to Exercises 423 Index 439