Jon Pierre Fortney
Discrete Mathematics for Computer Science (eBook, PDF)
An Example-Based Introduction
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Jon Pierre Fortney
Discrete Mathematics for Computer Science (eBook, PDF)
An Example-Based Introduction
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is intended for a first or second-year discrete mathematics course for computer science majors. It covers many important mathematical topics essential for future computer science majors, such as algorithms, number representations, logic, set theory, Boolean algebra, functions, combinatorics etc.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 20.3MB
Andere Kunden interessierten sich auch für
- Jon Pierre FortneyDiscrete Mathematics for Computer Science (eBook, ePUB)52,95 €
- Handbook of Graph Theory (eBook, PDF)214,95 €
- Pierre-Loic MeliotRepresentation Theory of Symmetric Groups (eBook, PDF)46,95 €
- Caroline J. KlivansThe Mathematics of Chip-Firing (eBook, PDF)115,95 €
- Fabrizio LuccioMathematical and Algorithmic Foundations of the Internet (eBook, PDF)62,95 €
- Combinatorial Scientific Computing (eBook, PDF)62,95 €
- Istvan MiklosComputational Complexity of Counting and Sampling (eBook, PDF)91,95 €
-
-
-
This book is intended for a first or second-year discrete mathematics course for computer science majors. It covers many important mathematical topics essential for future computer science majors, such as algorithms, number representations, logic, set theory, Boolean algebra, functions, combinatorics etc.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 272
- Erscheinungstermin: 23. Dezember 2020
- Englisch
- ISBN-13: 9781000296648
- Artikelnr.: 60763815
- Verlag: Taylor & Francis
- Seitenzahl: 272
- Erscheinungstermin: 23. Dezember 2020
- Englisch
- ISBN-13: 9781000296648
- Artikelnr.: 60763815
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Jon Pierre Fortney graduated from the University of Pennsylvania in 1996 with a B.A. in Mathematics and Actuarial Science and a B.S.E. in Chemical Engineering. Prior to returning to graduate school he worked as both an environmental engineer and as an actuarial analyst. He graduated from Arizona State University in 2008 with a Ph.D. in Mathematics, specializing in Geometric Mechanics. Since 2012 he has worked at Zayed University in Dubai. This is his second mathematics textbook.
1. Introduction to Algorithms. 1.1. What are Algorithms? 1.2. Control
Structures. 1.3. Tracing an Algorithm. 1.4. Algorithm Examples. 1.5.
Problems. 2. Number Representations. 2.1. Whole Numbers. 2.2. Fractional
Numbers. 2.3. The Relationship Between Binary, Octal, and Hexadecimal
Numbers. 2.4. Converting from Decimal Numbers. 2.5. Problems. 3. Logic.
3.1. Propositions and Connectives. 3.2. Connective Truth Tables. 3.3. Truth
Value of Compound Statements. 3.4. Tautologies and Contradictions. 3.5.
Logical Equivalence and The Laws of Logic. 3.6 Problems. 4. Set Theory.
4.1. Set Notation. 4.2. Set Operations. 4.3. Venn Diagrams. 4.4. The Laws
of Set Theory. 4.5. Binary Relations on Sets. 4.6. Problems. 5. Boolean
Algebra. 5.1. Definition of Boolean Algebra. 5.2. Logic and Set Theory as
Boolean Algebras. 5.3. Digital Circuits. 5.4. Sums-of-Products and
Products-of-Sums. 5.5. Problems. 6. Functions. 6.1. Introduction to
Functions. 6.2. Real-valued Functions. 6.3. Function Composition and
Inverses. 6.4. Problems. 7. Counting and Combinatorics. 7.1. Addition and
Multiplication Principles. 7.2. Counting Algorithm Loops. 7.3. Permutations
and Arrangements. 7.4. Combinations and Subsets. 7.5. Permutation and
Combination Examples. 7.6. Problems. 8. Algorithmic Complexity. 8.1.
Overview of Algorithmic Complexity. 8.2. Time-Complexity Functions. 8.3.
Finding Time-Complexity Functions. 8.4. Big-O Notation. 8.5. Ranking
Algorithms. 8.6. Problems. 9. Graph Theory. 9.1. Basic Definitions. 9.2.
Eulerian and Semi-Eulerian Graphs. 9.3. Matrix representation of Graphs.
9.4. Reachability for Directed Graphs. 9.5. Problems. 10. Trees. 10.1 Basic
Definitions. 10.2. Minimal Spanning Trees of Weighted Graphs. 10.3. Minimal
Distance Paths. 10.4. Problems. Appendix A: Basic Circuit Design. Appendix
B: Answers to Problems.
Structures. 1.3. Tracing an Algorithm. 1.4. Algorithm Examples. 1.5.
Problems. 2. Number Representations. 2.1. Whole Numbers. 2.2. Fractional
Numbers. 2.3. The Relationship Between Binary, Octal, and Hexadecimal
Numbers. 2.4. Converting from Decimal Numbers. 2.5. Problems. 3. Logic.
3.1. Propositions and Connectives. 3.2. Connective Truth Tables. 3.3. Truth
Value of Compound Statements. 3.4. Tautologies and Contradictions. 3.5.
Logical Equivalence and The Laws of Logic. 3.6 Problems. 4. Set Theory.
4.1. Set Notation. 4.2. Set Operations. 4.3. Venn Diagrams. 4.4. The Laws
of Set Theory. 4.5. Binary Relations on Sets. 4.6. Problems. 5. Boolean
Algebra. 5.1. Definition of Boolean Algebra. 5.2. Logic and Set Theory as
Boolean Algebras. 5.3. Digital Circuits. 5.4. Sums-of-Products and
Products-of-Sums. 5.5. Problems. 6. Functions. 6.1. Introduction to
Functions. 6.2. Real-valued Functions. 6.3. Function Composition and
Inverses. 6.4. Problems. 7. Counting and Combinatorics. 7.1. Addition and
Multiplication Principles. 7.2. Counting Algorithm Loops. 7.3. Permutations
and Arrangements. 7.4. Combinations and Subsets. 7.5. Permutation and
Combination Examples. 7.6. Problems. 8. Algorithmic Complexity. 8.1.
Overview of Algorithmic Complexity. 8.2. Time-Complexity Functions. 8.3.
Finding Time-Complexity Functions. 8.4. Big-O Notation. 8.5. Ranking
Algorithms. 8.6. Problems. 9. Graph Theory. 9.1. Basic Definitions. 9.2.
Eulerian and Semi-Eulerian Graphs. 9.3. Matrix representation of Graphs.
9.4. Reachability for Directed Graphs. 9.5. Problems. 10. Trees. 10.1 Basic
Definitions. 10.2. Minimal Spanning Trees of Weighted Graphs. 10.3. Minimal
Distance Paths. 10.4. Problems. Appendix A: Basic Circuit Design. Appendix
B: Answers to Problems.
1. Introduction to Algorithms. 1.1. What are Algorithms? 1.2. Control
Structures. 1.3. Tracing an Algorithm. 1.4. Algorithm Examples. 1.5.
Problems. 2. Number Representations. 2.1. Whole Numbers. 2.2. Fractional
Numbers. 2.3. The Relationship Between Binary, Octal, and Hexadecimal
Numbers. 2.4. Converting from Decimal Numbers. 2.5. Problems. 3. Logic.
3.1. Propositions and Connectives. 3.2. Connective Truth Tables. 3.3. Truth
Value of Compound Statements. 3.4. Tautologies and Contradictions. 3.5.
Logical Equivalence and The Laws of Logic. 3.6 Problems. 4. Set Theory.
4.1. Set Notation. 4.2. Set Operations. 4.3. Venn Diagrams. 4.4. The Laws
of Set Theory. 4.5. Binary Relations on Sets. 4.6. Problems. 5. Boolean
Algebra. 5.1. Definition of Boolean Algebra. 5.2. Logic and Set Theory as
Boolean Algebras. 5.3. Digital Circuits. 5.4. Sums-of-Products and
Products-of-Sums. 5.5. Problems. 6. Functions. 6.1. Introduction to
Functions. 6.2. Real-valued Functions. 6.3. Function Composition and
Inverses. 6.4. Problems. 7. Counting and Combinatorics. 7.1. Addition and
Multiplication Principles. 7.2. Counting Algorithm Loops. 7.3. Permutations
and Arrangements. 7.4. Combinations and Subsets. 7.5. Permutation and
Combination Examples. 7.6. Problems. 8. Algorithmic Complexity. 8.1.
Overview of Algorithmic Complexity. 8.2. Time-Complexity Functions. 8.3.
Finding Time-Complexity Functions. 8.4. Big-O Notation. 8.5. Ranking
Algorithms. 8.6. Problems. 9. Graph Theory. 9.1. Basic Definitions. 9.2.
Eulerian and Semi-Eulerian Graphs. 9.3. Matrix representation of Graphs.
9.4. Reachability for Directed Graphs. 9.5. Problems. 10. Trees. 10.1 Basic
Definitions. 10.2. Minimal Spanning Trees of Weighted Graphs. 10.3. Minimal
Distance Paths. 10.4. Problems. Appendix A: Basic Circuit Design. Appendix
B: Answers to Problems.
Structures. 1.3. Tracing an Algorithm. 1.4. Algorithm Examples. 1.5.
Problems. 2. Number Representations. 2.1. Whole Numbers. 2.2. Fractional
Numbers. 2.3. The Relationship Between Binary, Octal, and Hexadecimal
Numbers. 2.4. Converting from Decimal Numbers. 2.5. Problems. 3. Logic.
3.1. Propositions and Connectives. 3.2. Connective Truth Tables. 3.3. Truth
Value of Compound Statements. 3.4. Tautologies and Contradictions. 3.5.
Logical Equivalence and The Laws of Logic. 3.6 Problems. 4. Set Theory.
4.1. Set Notation. 4.2. Set Operations. 4.3. Venn Diagrams. 4.4. The Laws
of Set Theory. 4.5. Binary Relations on Sets. 4.6. Problems. 5. Boolean
Algebra. 5.1. Definition of Boolean Algebra. 5.2. Logic and Set Theory as
Boolean Algebras. 5.3. Digital Circuits. 5.4. Sums-of-Products and
Products-of-Sums. 5.5. Problems. 6. Functions. 6.1. Introduction to
Functions. 6.2. Real-valued Functions. 6.3. Function Composition and
Inverses. 6.4. Problems. 7. Counting and Combinatorics. 7.1. Addition and
Multiplication Principles. 7.2. Counting Algorithm Loops. 7.3. Permutations
and Arrangements. 7.4. Combinations and Subsets. 7.5. Permutation and
Combination Examples. 7.6. Problems. 8. Algorithmic Complexity. 8.1.
Overview of Algorithmic Complexity. 8.2. Time-Complexity Functions. 8.3.
Finding Time-Complexity Functions. 8.4. Big-O Notation. 8.5. Ranking
Algorithms. 8.6. Problems. 9. Graph Theory. 9.1. Basic Definitions. 9.2.
Eulerian and Semi-Eulerian Graphs. 9.3. Matrix representation of Graphs.
9.4. Reachability for Directed Graphs. 9.5. Problems. 10. Trees. 10.1 Basic
Definitions. 10.2. Minimal Spanning Trees of Weighted Graphs. 10.3. Minimal
Distance Paths. 10.4. Problems. Appendix A: Basic Circuit Design. Appendix
B: Answers to Problems.