Civil engineering failures currently amount to 5 to 10 % of the total investment in new buildings and structures. These failures not only represent important cost considerations, they also have an environmental burden associated with them. Structures often deteriorate because not enough attention is given during the design stage and most standards for structural design do not cover design for service life. Designing for durability is often left to the structural designer or architect who may not have the necessary skills, and the result is all too often failure, incurring high maintenance and repair costs. Knowledge of the long-term behaviour of materials, building components and structures is the basis for avoiding these failures.
Durability of engineering structures uses on the design of buildings for service life, effective maintenance and repair techniques in order to reduce the likelihood of failure. It describes the in situ performance of all the major man-made materials used in civil engineering construction - metals (steel and aluminium), concrete and wood. In addition some relatively new high-performance materials are discussed - high-performance concrete, high-performance steel and fibre-reinforced polymers (FRP). Deterioration mechanisms and the measures to counteract these, as well as subsequent maintenance and repair techniques are also considered and the latest standards on durability and repair are explained.
Strategies for durability, maintenance and repair, including life cycle costing and environmental life cycle assessment methods are discussed. Finally practical case studies show how repairs can be made and the best ways of ensuring long term durability. This book is aimed at students in civil engineering, engineers, architects, contractors, plant managers, maintenance managers and inspection engineers.
Durability of engineering structures uses on the design of buildings for service life, effective maintenance and repair techniques in order to reduce the likelihood of failure. It describes the in situ performance of all the major man-made materials used in civil engineering construction - metals (steel and aluminium), concrete and wood. In addition some relatively new high-performance materials are discussed - high-performance concrete, high-performance steel and fibre-reinforced polymers (FRP). Deterioration mechanisms and the measures to counteract these, as well as subsequent maintenance and repair techniques are also considered and the latest standards on durability and repair are explained.
Strategies for durability, maintenance and repair, including life cycle costing and environmental life cycle assessment methods are discussed. Finally practical case studies show how repairs can be made and the best ways of ensuring long term durability. This book is aimed at students in civil engineering, engineers, architects, contractors, plant managers, maintenance managers and inspection engineers.
- Explains the reasons why structures often deteriorate before they should because of poor design
- Shows how to design structures effectively for service life
- Considers durability characteristics of standard and high performance construction materials
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.