The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online.
No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.
Giovanni Petris is Associate Professor at the University of Arkansas. He has published many articles on time series analysis, Bayesian methods, and Monte Carlo techniques, and has served on National Science Foundation review panels. He regularly teaches courses on time series analysis at various universities in the US and in Italy. An active participant on the R mailing lists, he has developed and maintains a couple of contributed packages.
Sonia Petrone is Associate Professor of Statistics at Bocconi University,Milano. She has published research papers in top journals in the areas of Bayesian inference, Bayesian nonparametrics, and latent variables models. She is interested in Bayesian nonparametric methods for dynamic systems and state space models and is an active member of the International Society of Bayesian Analysis.
Patrizia Campagnoli received her PhD in Mathematical Statistics from the University of Pavia in 2002. She was Assistant Professor at the University of Milano-Bicocca and currently works for a financial software company.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"Dynamic Linear models With R provides a friendly introduction to the world of dynamic linear models (DLMs)... . This book provides the reader with the minimal tools necessary for Bayesian analysis of time series data using DLMs. ...The main contribution...is the DLM package in R which provides functions for dynamic linear model creation as well as filtering, smoothing, and forecasting. Therefore, the book can be utilized as a descriptive manual that provides a hybrid practical-theoretical perspective on the purpose of the functions in this extremely useful R package. ...I'd like to thank these authors for a useful applied Bayesian time series handbook suitable to a graduate statistics course and also to thank the editors of the Use R! series for providing a valuable collection of books for a fantastic open-source software." (American Statistician, August 2010, Vol. 64, No. 3)