117,95 €
117,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
59 °P sammeln
117,95 €
117,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
59 °P sammeln
Als Download kaufen
117,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
59 °P sammeln
Jetzt verschenken
117,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
59 °P sammeln
  • Format: ePub

Dynamics and Simulation of Flexible Rockets provides a full state, multiaxis treatment of launch vehicle flight mechanics and provides the state equations in a format that can be readily coded into a simulation environment. Various forms of the mass matrix for the vehicle dynamics are presented. The book also discusses important forms of coupling, such as between the nozzle motions and the flexible body.
This book is designed to help practicing aerospace engineers create simulations that can accurately verify that a space launch vehicle will successfully perform its mission. Much of the
…mehr

Produktbeschreibung
Dynamics and Simulation of Flexible Rockets provides a full state, multiaxis treatment of launch vehicle flight mechanics and provides the state equations in a format that can be readily coded into a simulation environment. Various forms of the mass matrix for the vehicle dynamics are presented. The book also discusses important forms of coupling, such as between the nozzle motions and the flexible body.

This book is designed to help practicing aerospace engineers create simulations that can accurately verify that a space launch vehicle will successfully perform its mission. Much of the open literature on rocket dynamics is based on analysis techniques developed during the Apollo program of the 1960s. Since that time, large-scale computational analysis techniques and improved methods for generating Finite Element Models (FEMs) have been developed. The art of the problem is to combine the FEM with dynamic models of separate elements such as sloshing fuel and moveable engine nozzles. The pitfalls that may occur when making this marriage are examined in detail.
  • Covers everything the dynamics and control engineer needs to analyze or improve the design of flexible launch vehicles
  • Provides derivations using Lagrange's equation and Newton/Euler approaches, allowing the reader to assess the importance of nonlinear terms
  • Details the development of linear models and introduces frequency-domain stability analysis techniques
  • Presents practical methods for transitioning between finite element models, incorporating actuator dynamics, and developing a preliminary flight control design

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Barrows has over 30 years of experience in analysis and simulation of complex mechanical systems for NASA and various agencies of the Department of Defense. His engineering expertise includes aerodynamics, multi-body dynamics, and simulation. A particular expertise is simulation of multibody systems. He has either directly created or supervised the construction of high fidelity simulations of several systems, including the attitude control of a satellite, a generalized robotic manipulator model, the space station mobile transporter, and the flight mechanics of precision guided airdrop systems. Other work has included successful airdrop tests of a gliding autogyro with folding rotor blades, and a concept definition of a large vehicle designed to fly in ground effect.He has served as Section Chief of the Dynamical Systems Group at Draper, in which capacity he served as the engineering task leader of for the Space Station Dynamic Interaction program. During the past ten years, Dr. Barrows has focused on the development of rocket simulations. This has included a wide variety of rockets for both private and government sponsors, culminating in work on NASA's space launch system.