Earth Gravity Field from Space - from Sensors to Earth Sciences (eBook, PDF)
Redaktion: Beutler, G.; Steiger, Rudolf Von; Rummel, R.; Drinkwater, M. R.
161,95 €
161,95 €
inkl. MwSt.
Sofort per Download lieferbar
81 °P sammeln
161,95 €
Als Download kaufen
161,95 €
inkl. MwSt.
Sofort per Download lieferbar
81 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
161,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
81 °P sammeln
Earth Gravity Field from Space - from Sensors to Earth Sciences (eBook, PDF)
Redaktion: Beutler, G.; Steiger, Rudolf Von; Rummel, R.; Drinkwater, M. R.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Volume resulting from an ISSI Workshop, 11-15 March 2002, Bern, Switzerland
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 70.03MB
Andere Kunden interessierten sich auch für
- Volker BothmerSpace Weather (eBook, PDF)298,95 €
- Earth Observations and Geospatial Science in Service of Sustainable Development Goals (eBook, PDF)113,95 €
- Future Satellite Gravimetry and Earth Dynamics (eBook, PDF)73,95 €
- SQUID Sensors (eBook, PDF)40,95 €
- Pamela Elizabeth ClarkMercury's Interior, Surface, and Surrounding Environment (eBook, PDF)40,95 €
- Ptolemy in Perspective (eBook, PDF)161,95 €
- Parameswar BanerjeeAn Introduction to Modern Timekeeping and Time Transfer (eBook, PDF)81,95 €
-
-
-
Volume resulting from an ISSI Workshop, 11-15 March 2002, Bern, Switzerland
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Netherlands
- Seitenzahl: 447
- Erscheinungstermin: 18. April 2013
- Englisch
- ISBN-13: 9789401713337
- Artikelnr.: 44046634
- Verlag: Springer Netherlands
- Seitenzahl: 447
- Erscheinungstermin: 18. April 2013
- Englisch
- ISBN-13: 9789401713337
- Artikelnr.: 44046634
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Foreword. How to Climb the Gravity Wall; R. Rummel.
I: Precise Orbit Determination and Gravity Field Modelling. Strategies for Precise Orbit Determination of Low Earth Orbiters Using the GPS; U. Hugentobler, G. Beutler. Aiming at a 1 cm Orbit for Low Earth Orbiters: Reduced-Dynamic and Kinematic Precise Orbit Determination; P.N.A.M. Visser, J.van den IJssel. Space-Wise, Time-Wise, Torus and Rosborough Representations in Gravity Field Modelling; N. Sneeuw. Gravity Field Recovery from GRACE: Unique Aspects of the High Precision Inter-Satellite Data and Analysis Methods; G. Balmino. Global Gravity Field Recovery Using Solely GPS Tracking and Accelerometer Data from CHAMP; C. Reigber, et al. The Processing of Band-Limited Measurements: Filtering Techniques in the Least Squares Context and in the Presence of Data Gaps; W.-D. Schuh.
II: Solid Earth Physics. Long Wavelength Sea Level and Solis Surface Perturbations Driven by Polar Ice Mass Variations: Fingerprinting Greenland and Antarctic Ice Sheet Flux; M.E. Tamisiea, et al. Benefits from GOCE within Solid Earth Geophysics; A.M. Marotta. The Potential of GOCE in Constraining the Structure of the Crust and Lithosphere from Post-Glacial Rebound; L.L.A. Vermeersen. Deep and Shallow Solid-Earth Structures Reconstructed with Sequential Integrated Inversion (SII) of Seismic and Gravity Data; R. Tondi, et al. Present-Day Sea Level Change: Observations and Causes; A. Cazenave, et al.
III: Ocean Circulation. Global Ocean Data Assimilation and Geoid Measurements; C. Wunsch, D. Stammer. Resolution Needed for an Adequate Determination of the Mean Ocean Circulation from Altimetry and an Improved Geoid; C. Le Provost, M. Bremond. Error Characteristics Esimated from CHAMP, GRACE and GOCE Derived Geoids and from Satellite Altimetry Derived Mean Dynamic Topography; E.J.O. Schrama. Estimating the High-Resolution Mean Sea-Surface Velocity Field by Combined Use of Altimeter and Drifter Data for Geoid Model Improvement; S. Imawaki, et al. Combined Use of Altimetry and In Situ Gravity Data for Coastal Dynamics Studies; K. Haines, et al. Feasibility and Contribution to Ocean Circulation Studies of Ocean Bottom Pressure Determination; C.W. Hughes, V. Stepanov. Impact of Geoid Improvement on Ocean Mass and Heat Transport Estimates; P. Le Grand. How Operational Oceanography can Benefit from Dynamic Topography Esimates as Derived from Altimetry and Improved Geoid; P.Y. Le Traon, et al.
IV: Geodesy. Remarks on the Role of Height Datum in Altimetry-Gravity Boundary-Value Problems; F. Sacerdote, F. Sanso. Ocean Tides in GRACE Monthly Averaged Gravity Fields; P. Knudsen. Tidal Models in a New Era of Satellite Gravimetry; R.D. Ray, et al. The Elusive Stationary Geoid; M. Vermeer. Geodetic Methods for Calibration of GRACE and GOCE; J. Bouman, R. Koop.
V: Sea Level. Benefits of GRACE and GOCE to Sea Level Studies; P. Woodworth, J.M. Gregory. What Might GRACE Contribute to Studies of Post Glacial Rebound? J. Wahr, I. Velicogna. Measuring the Distribution of Ocean Mass Using GRACE; R.S. Nerem, et al. Monitoring Changes in Continental Water Storage with GRACE; S. Swenson, J. Wahr.
VI: Future Concepts. Attitude and Drag Control: An Application to the GOCE Satellite; E. Canuto, et al. On Superconductive Gravity Gradiometry in Space; S. Zarembinski. Satellite-Satellite Laser Links for Future Gravity Missions; P.L. Bender, et al. Possible Future Use of Laser Gravity Gradiometers; P.L. Bender, et al. MI
I: Precise Orbit Determination and Gravity Field Modelling. Strategies for Precise Orbit Determination of Low Earth Orbiters Using the GPS; U. Hugentobler, G. Beutler. Aiming at a 1 cm Orbit for Low Earth Orbiters: Reduced-Dynamic and Kinematic Precise Orbit Determination; P.N.A.M. Visser, J.van den IJssel. Space-Wise, Time-Wise, Torus and Rosborough Representations in Gravity Field Modelling; N. Sneeuw. Gravity Field Recovery from GRACE: Unique Aspects of the High Precision Inter-Satellite Data and Analysis Methods; G. Balmino. Global Gravity Field Recovery Using Solely GPS Tracking and Accelerometer Data from CHAMP; C. Reigber, et al. The Processing of Band-Limited Measurements: Filtering Techniques in the Least Squares Context and in the Presence of Data Gaps; W.-D. Schuh.
II: Solid Earth Physics. Long Wavelength Sea Level and Solis Surface Perturbations Driven by Polar Ice Mass Variations: Fingerprinting Greenland and Antarctic Ice Sheet Flux; M.E. Tamisiea, et al. Benefits from GOCE within Solid Earth Geophysics; A.M. Marotta. The Potential of GOCE in Constraining the Structure of the Crust and Lithosphere from Post-Glacial Rebound; L.L.A. Vermeersen. Deep and Shallow Solid-Earth Structures Reconstructed with Sequential Integrated Inversion (SII) of Seismic and Gravity Data; R. Tondi, et al. Present-Day Sea Level Change: Observations and Causes; A. Cazenave, et al.
III: Ocean Circulation. Global Ocean Data Assimilation and Geoid Measurements; C. Wunsch, D. Stammer. Resolution Needed for an Adequate Determination of the Mean Ocean Circulation from Altimetry and an Improved Geoid; C. Le Provost, M. Bremond. Error Characteristics Esimated from CHAMP, GRACE and GOCE Derived Geoids and from Satellite Altimetry Derived Mean Dynamic Topography; E.J.O. Schrama. Estimating the High-Resolution Mean Sea-Surface Velocity Field by Combined Use of Altimeter and Drifter Data for Geoid Model Improvement; S. Imawaki, et al. Combined Use of Altimetry and In Situ Gravity Data for Coastal Dynamics Studies; K. Haines, et al. Feasibility and Contribution to Ocean Circulation Studies of Ocean Bottom Pressure Determination; C.W. Hughes, V. Stepanov. Impact of Geoid Improvement on Ocean Mass and Heat Transport Estimates; P. Le Grand. How Operational Oceanography can Benefit from Dynamic Topography Esimates as Derived from Altimetry and Improved Geoid; P.Y. Le Traon, et al.
IV: Geodesy. Remarks on the Role of Height Datum in Altimetry-Gravity Boundary-Value Problems; F. Sacerdote, F. Sanso. Ocean Tides in GRACE Monthly Averaged Gravity Fields; P. Knudsen. Tidal Models in a New Era of Satellite Gravimetry; R.D. Ray, et al. The Elusive Stationary Geoid; M. Vermeer. Geodetic Methods for Calibration of GRACE and GOCE; J. Bouman, R. Koop.
V: Sea Level. Benefits of GRACE and GOCE to Sea Level Studies; P. Woodworth, J.M. Gregory. What Might GRACE Contribute to Studies of Post Glacial Rebound? J. Wahr, I. Velicogna. Measuring the Distribution of Ocean Mass Using GRACE; R.S. Nerem, et al. Monitoring Changes in Continental Water Storage with GRACE; S. Swenson, J. Wahr.
VI: Future Concepts. Attitude and Drag Control: An Application to the GOCE Satellite; E. Canuto, et al. On Superconductive Gravity Gradiometry in Space; S. Zarembinski. Satellite-Satellite Laser Links for Future Gravity Missions; P.L. Bender, et al. Possible Future Use of Laser Gravity Gradiometers; P.L. Bender, et al. MI
Foreword. How to Climb the Gravity Wall; R. Rummel.
I: Precise Orbit Determination and Gravity Field Modelling. Strategies for Precise Orbit Determination of Low Earth Orbiters Using the GPS; U. Hugentobler, G. Beutler. Aiming at a 1 cm Orbit for Low Earth Orbiters: Reduced-Dynamic and Kinematic Precise Orbit Determination; P.N.A.M. Visser, J.van den IJssel. Space-Wise, Time-Wise, Torus and Rosborough Representations in Gravity Field Modelling; N. Sneeuw. Gravity Field Recovery from GRACE: Unique Aspects of the High Precision Inter-Satellite Data and Analysis Methods; G. Balmino. Global Gravity Field Recovery Using Solely GPS Tracking and Accelerometer Data from CHAMP; C. Reigber, et al. The Processing of Band-Limited Measurements: Filtering Techniques in the Least Squares Context and in the Presence of Data Gaps; W.-D. Schuh.
II: Solid Earth Physics. Long Wavelength Sea Level and Solis Surface Perturbations Driven by Polar Ice Mass Variations: Fingerprinting Greenland and Antarctic Ice Sheet Flux; M.E. Tamisiea, et al. Benefits from GOCE within Solid Earth Geophysics; A.M. Marotta. The Potential of GOCE in Constraining the Structure of the Crust and Lithosphere from Post-Glacial Rebound; L.L.A. Vermeersen. Deep and Shallow Solid-Earth Structures Reconstructed with Sequential Integrated Inversion (SII) of Seismic and Gravity Data; R. Tondi, et al. Present-Day Sea Level Change: Observations and Causes; A. Cazenave, et al.
III: Ocean Circulation. Global Ocean Data Assimilation and Geoid Measurements; C. Wunsch, D. Stammer. Resolution Needed for an Adequate Determination of the Mean Ocean Circulation from Altimetry and an Improved Geoid; C. Le Provost, M. Bremond. Error Characteristics Esimated from CHAMP, GRACE and GOCE Derived Geoids and from Satellite Altimetry Derived Mean Dynamic Topography; E.J.O. Schrama. Estimating the High-Resolution Mean Sea-Surface Velocity Field by Combined Use of Altimeter and Drifter Data for Geoid Model Improvement; S. Imawaki, et al. Combined Use of Altimetry and In Situ Gravity Data for Coastal Dynamics Studies; K. Haines, et al. Feasibility and Contribution to Ocean Circulation Studies of Ocean Bottom Pressure Determination; C.W. Hughes, V. Stepanov. Impact of Geoid Improvement on Ocean Mass and Heat Transport Estimates; P. Le Grand. How Operational Oceanography can Benefit from Dynamic Topography Esimates as Derived from Altimetry and Improved Geoid; P.Y. Le Traon, et al.
IV: Geodesy. Remarks on the Role of Height Datum in Altimetry-Gravity Boundary-Value Problems; F. Sacerdote, F. Sanso. Ocean Tides in GRACE Monthly Averaged Gravity Fields; P. Knudsen. Tidal Models in a New Era of Satellite Gravimetry; R.D. Ray, et al. The Elusive Stationary Geoid; M. Vermeer. Geodetic Methods for Calibration of GRACE and GOCE; J. Bouman, R. Koop.
V: Sea Level. Benefits of GRACE and GOCE to Sea Level Studies; P. Woodworth, J.M. Gregory. What Might GRACE Contribute to Studies of Post Glacial Rebound? J. Wahr, I. Velicogna. Measuring the Distribution of Ocean Mass Using GRACE; R.S. Nerem, et al. Monitoring Changes in Continental Water Storage with GRACE; S. Swenson, J. Wahr.
VI: Future Concepts. Attitude and Drag Control: An Application to the GOCE Satellite; E. Canuto, et al. On Superconductive Gravity Gradiometry in Space; S. Zarembinski. Satellite-Satellite Laser Links for Future Gravity Missions; P.L. Bender, et al. Possible Future Use of Laser Gravity Gradiometers; P.L. Bender, et al. MI
I: Precise Orbit Determination and Gravity Field Modelling. Strategies for Precise Orbit Determination of Low Earth Orbiters Using the GPS; U. Hugentobler, G. Beutler. Aiming at a 1 cm Orbit for Low Earth Orbiters: Reduced-Dynamic and Kinematic Precise Orbit Determination; P.N.A.M. Visser, J.van den IJssel. Space-Wise, Time-Wise, Torus and Rosborough Representations in Gravity Field Modelling; N. Sneeuw. Gravity Field Recovery from GRACE: Unique Aspects of the High Precision Inter-Satellite Data and Analysis Methods; G. Balmino. Global Gravity Field Recovery Using Solely GPS Tracking and Accelerometer Data from CHAMP; C. Reigber, et al. The Processing of Band-Limited Measurements: Filtering Techniques in the Least Squares Context and in the Presence of Data Gaps; W.-D. Schuh.
II: Solid Earth Physics. Long Wavelength Sea Level and Solis Surface Perturbations Driven by Polar Ice Mass Variations: Fingerprinting Greenland and Antarctic Ice Sheet Flux; M.E. Tamisiea, et al. Benefits from GOCE within Solid Earth Geophysics; A.M. Marotta. The Potential of GOCE in Constraining the Structure of the Crust and Lithosphere from Post-Glacial Rebound; L.L.A. Vermeersen. Deep and Shallow Solid-Earth Structures Reconstructed with Sequential Integrated Inversion (SII) of Seismic and Gravity Data; R. Tondi, et al. Present-Day Sea Level Change: Observations and Causes; A. Cazenave, et al.
III: Ocean Circulation. Global Ocean Data Assimilation and Geoid Measurements; C. Wunsch, D. Stammer. Resolution Needed for an Adequate Determination of the Mean Ocean Circulation from Altimetry and an Improved Geoid; C. Le Provost, M. Bremond. Error Characteristics Esimated from CHAMP, GRACE and GOCE Derived Geoids and from Satellite Altimetry Derived Mean Dynamic Topography; E.J.O. Schrama. Estimating the High-Resolution Mean Sea-Surface Velocity Field by Combined Use of Altimeter and Drifter Data for Geoid Model Improvement; S. Imawaki, et al. Combined Use of Altimetry and In Situ Gravity Data for Coastal Dynamics Studies; K. Haines, et al. Feasibility and Contribution to Ocean Circulation Studies of Ocean Bottom Pressure Determination; C.W. Hughes, V. Stepanov. Impact of Geoid Improvement on Ocean Mass and Heat Transport Estimates; P. Le Grand. How Operational Oceanography can Benefit from Dynamic Topography Esimates as Derived from Altimetry and Improved Geoid; P.Y. Le Traon, et al.
IV: Geodesy. Remarks on the Role of Height Datum in Altimetry-Gravity Boundary-Value Problems; F. Sacerdote, F. Sanso. Ocean Tides in GRACE Monthly Averaged Gravity Fields; P. Knudsen. Tidal Models in a New Era of Satellite Gravimetry; R.D. Ray, et al. The Elusive Stationary Geoid; M. Vermeer. Geodetic Methods for Calibration of GRACE and GOCE; J. Bouman, R. Koop.
V: Sea Level. Benefits of GRACE and GOCE to Sea Level Studies; P. Woodworth, J.M. Gregory. What Might GRACE Contribute to Studies of Post Glacial Rebound? J. Wahr, I. Velicogna. Measuring the Distribution of Ocean Mass Using GRACE; R.S. Nerem, et al. Monitoring Changes in Continental Water Storage with GRACE; S. Swenson, J. Wahr.
VI: Future Concepts. Attitude and Drag Control: An Application to the GOCE Satellite; E. Canuto, et al. On Superconductive Gravity Gradiometry in Space; S. Zarembinski. Satellite-Satellite Laser Links for Future Gravity Missions; P.L. Bender, et al. Possible Future Use of Laser Gravity Gradiometers; P.L. Bender, et al. MI