Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1: Begriff einer Ableitung für Funktionen auf der dyadischen Gruppe G.- 1.1 Grundlagen.- 1.2 Definition der Ableitung D[r].- 1.3 Der zu D[r] inverse Operator I[r].- 1.4 Starke und punktweise Ableitung im Raume C(G).- 1.5 Spezielle Eigenschaften von f[1]($$bar x$$) und (I[1] f)($$bar x$$).- 2: Ableitungs-und Integraloperator D[r] bzw. I[r] für periodische Funktionen auf der reellen Achse.- 2.1 Hilfsmittel.- 2.2 Zusammenstellung der Ergebnisse für periodische Funktionen auf der reellen Achse.- 3: Spezielle Probleme der Walsh - Fourier - Analysis.- 3.1 Walshfunktionen als Eigenlösungen.- 3.2 Größenordnung der Walsh - Fourierkoeffizienten.- 3.3 Beste Approximation durch Walshpolynome.- 3.4 Konvergenzgeschwindigkeit der Walsh - Fourierteilsummen.- 3.5 Partielle Differentialgleichung vom Typ der Telegraphengleichung.
1: Begriff einer Ableitung für Funktionen auf der dyadischen Gruppe G.- 1.1 Grundlagen.- 1.2 Definition der Ableitung D[r].- 1.3 Der zu D[r] inverse Operator I[r].- 1.4 Starke und punktweise Ableitung im Raume C(G).- 1.5 Spezielle Eigenschaften von f[1]($$bar x$$) und (I[1] f)($$bar x$$).- 2: Ableitungs-und Integraloperator D[r] bzw. I[r] für periodische Funktionen auf der reellen Achse.- 2.1 Hilfsmittel.- 2.2 Zusammenstellung der Ergebnisse für periodische Funktionen auf der reellen Achse.- 3: Spezielle Probleme der Walsh - Fourier - Analysis.- 3.1 Walshfunktionen als Eigenlösungen.- 3.2 Größenordnung der Walsh - Fourierkoeffizienten.- 3.3 Beste Approximation durch Walshpolynome.- 3.4 Konvergenzgeschwindigkeit der Walsh - Fourierteilsummen.- 3.5 Partielle Differentialgleichung vom Typ der Telegraphengleichung.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826