-21%11
66,99 €
84,99 €**
66,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
33 °P sammeln
-21%11
66,99 €
84,99 €**
66,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
33 °P sammeln
Als Download kaufen
84,99 €****
-21%11
66,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
33 °P sammeln
Jetzt verschenken
84,99 €****
-21%11
66,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
33 °P sammeln
  • Format: PDF

Marco Scheffmann stellt einen neuartigen multikriteriellen Lösungsalgorithmus für die Erzeugung optimaler Datensätze von Fahrzeugsteuergeräten vor. Im Gegensatz zu verbreiteten, zumeist evolutionären Ansätzen wendet der Autor hier einen Ansatz des bestärkenden Lernens an. Infolge der eigenständigen Entwicklung zielgerichteter Handlungsstrategien kann damit auf sonst häufig eingesetzte vorangestellte Methoden der statistischen Versuchsplanung und der Metamodellbildung verzichtet werden. Zur subjektiven Betrachtung von optimierten Datensätzen dient ihm die echtzeitfähige Verkopplung der…mehr

Produktbeschreibung
Marco Scheffmann stellt einen neuartigen multikriteriellen Lösungsalgorithmus für die Erzeugung optimaler Datensätze von Fahrzeugsteuergeräten vor. Im Gegensatz zu verbreiteten, zumeist evolutionären Ansätzen wendet der Autor hier einen Ansatz des bestärkenden Lernens an. Infolge der eigenständigen Entwicklung zielgerichteter Handlungsstrategien kann damit auf sonst häufig eingesetzte vorangestellte Methoden der statistischen Versuchsplanung und der Metamodellbildung verzichtet werden. Zur subjektiven Betrachtung von optimierten Datensätzen dient ihm die echtzeitfähige Verkopplung der vollbeweglichen Fahrsimulation mit virtualisierten Steuergeräten. Seine abschließende Probandenstudie bestätigt die Ergebnisse des vorgestellten methodischen Ansatzes.
Der Inhalt
  • Rewardfunktion zur Bewertung kooperativer Handlungen
  • Netzwerkarchitektur der selbstlernenden Optimierung
  • Verkopplung des Fahrsimulators
  • Expertenstudie
Die Zielgruppen
  • Dozierende und Studierende der Fahrzeugtechnik, Elektrotechnik und Informatik
  • In der Industrie tätige Ingenieure und Informatiker
Der Autor
Marco Scheffmann hat nach seinem Studium an der Universität Stuttgart am Institut für Fahrzeugtechnik Stuttgart (IFS) der Universität Stuttgart im Bereich Kraftfahrzeugmechatronik promoviert. Zurzeit arbeitet er am Stuttgarter Fahrsimulator im Bereich der virtuellen Applikation.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Marco Scheffmann hat nach seinem Studium an der Universität Stuttgart am Institut für Fahrzeugtechnik Stuttgart (IFS) der Universität Stuttgart im Bereich Kraftfahrzeugmechatronik promoviert. Zurzeit arbeitet er am Stuttgarter Fahrsimulator im Bereich der virtuellen Applikation.