W. Klingenberg
Eine Vorlesung über Differentialgeometrie (eBook, PDF)
-28%11
35,96 €
49,99 €**
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
-28%11
35,96 €
49,99 €**
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
Als Download kaufen
49,99 €****
-28%11
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
49,99 €****
-28%11
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
W. Klingenberg
Eine Vorlesung über Differentialgeometrie (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.91MB
Andere Kunden interessierten sich auch für
- -41%11Heinrich BraunerDifferentialgeometrie (eBook, PDF)38,66 €
- -55%11Jost-Hinrich EschenburgDifferentialgeometrie und Minimalflächen (eBook, PDF)24,99 €
- -40%11Detlef GromollRiemannsche Geometrie im Großen (eBook, PDF)26,96 €
- Wolfgang KühnelDifferentialgeometrie (eBook, PDF)36,99 €
- Wolfgang KühnelDifferentialgeometrie (eBook, PDF)36,99 €
- -21%11David HilbertAnschauliche Geometrie (eBook, PDF)66,99 €
- -23%11Wilhelm BlaschkeElementare Differentialgeometrie (eBook, PDF)53,94 €
- -25%11
- -33%11
- -24%11
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 138
- Erscheinungstermin: 12. März 2013
- Deutsch
- ISBN-13: 9783642655944
- Artikelnr.: 53289420
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
0. Differentialrechnung im euklidischen Raum.- 0.1 Der euklidische Raum.- 0.2 Die Topologie des euklidischen Raumes ?n.- 0.3 Differentiation in ?n.- 0.4 Tangentialräume.- 0.5 Lokal injektive und lokal surjektive Abbildungen.- 1. Kurven - Allgemeine Theorie.- 1.1 Grundlegende Definitionen.- 1.2 Das begleitende n-Bein.- 1.3 Die Ableitungsgleichungen von Frenet.- 1.4 Ebene Kurven.- 1.5 Raumkurven.- 1.6 Aufgaben.- 2. Ebene Kurven im Großen.- 2.1 Die Umlaufzahl.- 2.2 Der Umlaufsatz.- 2.3 Konvexe Kurven.- 2.4 Aufgaben und Lehrsätze.- 3. Lokale Flächentheorie.- 3.1 Grundlegende Definitionen.- 3.2 Die erste Fundamentalform.- 3.3 Die zweite Fundamentalform.- 3.4 Kurven auf Flächen.- 3.5 Die Krümmungen einer Fläche.- 3.6 Lokale Normalform und spezielle Parameter.- 3.7 Einige spezielle Flächen.- 3.8 Die Ableitungsgleichungen.- 3.9 Aufgaben und Lehrsätze.- 4. Innere Flächentheorie: Lokale Theorie.- 4.1 Kovariante Ableitung.- 4.2 Parallelverschiebung.- 4.3 Geodätische.- 4.4 Flächen konstanter Krümmung.- 4.5 Aufgaben und Lehrsätze.- 5. 2-dimensionale riemannsche Geometrie.- 5.1 Die lokale riemannsche Geometrie.- 5.2 Das Tangentialbündel und die Exponentialabbildung.- 5.3 Geodätische Polarkoordinaten.- 5.4 Jacobifelder.- 5.5 Mannigfaltigkeiten.- 5.6 Differentialformen.- 5.7 Aufgaben und Lehrsätze.- 6. Flächentheorie im Großen.- 6.1 Flächen im euklidischen Raum.- 6.2 Eiflächen.- 6.3 Der Integralsatz von Gauß-Bonnet.- 6.4 Metrik und Vollständigkeit.- 6.5 Konjugierte Punkte und Krümmung.- 6.6 Einfluß der Krümmung auf die Geometrie der Fläche.- 6.7 Geschlossene Geodätische und Fundamentalgruppe.- 6.8 Aufgaben und Lehrsätze.- Literaturhinweise.- Namen- und Sachverzeichnis.
0. Differentialrechnung im euklidischen Raum.- 0.1 Der euklidische Raum.- 0.2 Die Topologie des euklidischen Raumes ?n.- 0.3 Differentiation in ?n.- 0.4 Tangentialräume.- 0.5 Lokal injektive und lokal surjektive Abbildungen.- 1. Kurven - Allgemeine Theorie.- 1.1 Grundlegende Definitionen.- 1.2 Das begleitende n-Bein.- 1.3 Die Ableitungsgleichungen von Frenet.- 1.4 Ebene Kurven.- 1.5 Raumkurven.- 1.6 Aufgaben.- 2. Ebene Kurven im Großen.- 2.1 Die Umlaufzahl.- 2.2 Der Umlaufsatz.- 2.3 Konvexe Kurven.- 2.4 Aufgaben und Lehrsätze.- 3. Lokale Flächentheorie.- 3.1 Grundlegende Definitionen.- 3.2 Die erste Fundamentalform.- 3.3 Die zweite Fundamentalform.- 3.4 Kurven auf Flächen.- 3.5 Die Krümmungen einer Fläche.- 3.6 Lokale Normalform und spezielle Parameter.- 3.7 Einige spezielle Flächen.- 3.8 Die Ableitungsgleichungen.- 3.9 Aufgaben und Lehrsätze.- 4. Innere Flächentheorie: Lokale Theorie.- 4.1 Kovariante Ableitung.- 4.2 Parallelverschiebung.- 4.3 Geodätische.- 4.4 Flächen konstanter Krümmung.- 4.5 Aufgaben und Lehrsätze.- 5. 2-dimensionale riemannsche Geometrie.- 5.1 Die lokale riemannsche Geometrie.- 5.2 Das Tangentialbündel und die Exponentialabbildung.- 5.3 Geodätische Polarkoordinaten.- 5.4 Jacobifelder.- 5.5 Mannigfaltigkeiten.- 5.6 Differentialformen.- 5.7 Aufgaben und Lehrsätze.- 6. Flächentheorie im Großen.- 6.1 Flächen im euklidischen Raum.- 6.2 Eiflächen.- 6.3 Der Integralsatz von Gauß-Bonnet.- 6.4 Metrik und Vollständigkeit.- 6.5 Konjugierte Punkte und Krümmung.- 6.6 Einfluß der Krümmung auf die Geometrie der Fläche.- 6.7 Geschlossene Geodätische und Fundamentalgruppe.- 6.8 Aufgaben und Lehrsätze.- Literaturhinweise.- Namen- und Sachverzeichnis.