Dieses essential befasst sich mit der einfachen linearen Regression, der simpelsten Form von Regressionsmodellen, in der für die Modellbildung nur eine einzige Einflussvariable berücksichtigt wird. Leser finden in diesem Buch die Methode der kleinsten Quadrate zur Schätzung der Modellparameter, Residualanalysen zur Überprüfung der Modellannahmen sowie weitere statistische Verfahren zur Beurteilung des Modells. Zudem erfahren sie, wie das Modell als ein Prognoseinstrument eingesetzt werden kann. Somit erwerben Leser eine solide Grundlage zum Verständnis komplexer Regressionsansätze, bei denen mehrere Variablen die Zielgröße beeinflussen und nichtlineare Zusammenhänge vorliegen.
Der Inhalt
- Definition des einfachen Regressionsmodells
- Überprüfung der Modellvoraussetzungen
- Beurteilung des Modells durch den Korrelations- und den Determinationskoeffizienten
- Regressionsgerade als einInstrument für eine Prognose
- Umkehrregression
Die Zielgruppen
- Studierende und Dozierende der Sozial- und Wirtschaftswissenschaften sowie Psychologie und Medizin
- Praktiker, die ihr Forschungsinstrument und ihre Studienergebnisse verstehen wollen
Die Autorin
Dipl.-Statistikerin Irasianty Frost ist als Dozentin für Statistik an der Hochschule Fresenius in München tätig.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.