H. Lüneburg
Einführung in die Algebra (eBook, PDF)
-28%11
35,96 €
49,99 €**
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
-28%11
35,96 €
49,99 €**
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
Als Download kaufen
49,99 €****
-28%11
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
49,99 €****
-28%11
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
H. Lüneburg
Einführung in die Algebra (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 26.03MB
Andere Kunden interessierten sich auch für
- -25%11H. KurzweilEndliche Gruppen (eBook, PDF)39,99 €
- -23%11Stephan RosebrockAnschauliche Gruppentheorie (eBook, PDF)26,99 €
- -49%11Stephan RosebrockGeometrische Gruppentheorie (eBook, PDF)17,98 €
- Stephan RosebrockGeometrische Gruppentheorie (eBook, PDF)39,99 €
- -26%11Jean Pierre SerreLineare Darstellungen endlicher Gruppen (eBook, PDF)33,26 €
- Hans HermesEinführung in die Verbandstheorie (eBook, PDF)39,99 €
- Friedrich KaschProjektive Frobenius-Erweiterungen (eBook, PDF)39,99 €
-
- -30%11
- -28%11
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 292
- Erscheinungstermin: 8. März 2013
- Deutsch
- ISBN-13: 9783642864971
- Artikelnr.: 53092690
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I. Grundbegriffe.- 1. Die ganzen Zahlen.- 2. Mengen und Mengenoperationen.- 3. Abbildungen.- 4. Endliche Mengen.- II. Gruppen.- 1. Definitionen und erste Resultate.- 2. Untergruppen.- 3. Homomorphismen, Normalteiler und Faktorgruppen.- 4. Zyklische Gruppen.- 5. Die symnetrischen und alternierenden Gruppen.- III. Aus der Ringtheorie.- 1. Definitionen, Beispiele und Rechenregeln.- 2. Homomorphismen.- 3. Ideale und Quotientenringe.- 4. Der Ring der ganzen Zahlen.- 5. Quotientenkörper.- 6. Angeordnete Gruppen, Ringe und Körper.- 7. Die reellen Zahlen.- 8. Die Hensel'sehen p-adischen Zahlen.- 9. Euklidische Ringe.- 10. Der Ring der ganzen Gauß'sehen Zahlen.- 11. Polynomringe.- IV. Vektorräume.- 1. Moduln.- 2. Die Isomorphiesätze.- 3. Endlich erzeugte Vektorräume.- 4. Das Auswahlaxiom.- 5. Die Struktur von beliebigen Vektorräumen.- 6. Vektorräume und ihre Unterraumverbände.- 7. Direkte Summen.- 8. Der Dualraum.- 9. Der Endoimorphismenring eines Vektorraumes.- V. Lineare Abbildungen und Matrizen.- 1. Darstellung von linearen Abbildungen durch Matrizen.- 2. Quatemionenschiefkörper.- 3. Duale Abbildungen.- 4. Systeme von linearen Gleichungen.- 5. Determinanten.- VI. Aus der Körpertheorie.- 1. Erweiterungskörper.- 2. Nullstellen von Polynomen.- 3. Galoisfeider.- 4. Symmetrische Funktionen.- 5. Die konplexen Zahlen.- 6. Ein Satz von Wedderburn.- VII. Normalformen von linearen Abbildungen und Matrizen.- 1. EndK(V) als K-Algebra.- 2. Eigenwerte.- 3. Hauptidealringe.- 4. Moduln über Hauptidealringen.- 5. Anwendungen auf lineare Abbildungen.
I. Grundbegriffe.- 1. Die ganzen Zahlen.- 2. Mengen und Mengenoperationen.- 3. Abbildungen.- 4. Endliche Mengen.- II. Gruppen.- 1. Definitionen und erste Resultate.- 2. Untergruppen.- 3. Homomorphismen, Normalteiler und Faktorgruppen.- 4. Zyklische Gruppen.- 5. Die symnetrischen und alternierenden Gruppen.- III. Aus der Ringtheorie.- 1. Definitionen, Beispiele und Rechenregeln.- 2. Homomorphismen.- 3. Ideale und Quotientenringe.- 4. Der Ring der ganzen Zahlen.- 5. Quotientenkörper.- 6. Angeordnete Gruppen, Ringe und Körper.- 7. Die reellen Zahlen.- 8. Die Hensel'sehen p-adischen Zahlen.- 9. Euklidische Ringe.- 10. Der Ring der ganzen Gauß'sehen Zahlen.- 11. Polynomringe.- IV. Vektorräume.- 1. Moduln.- 2. Die Isomorphiesätze.- 3. Endlich erzeugte Vektorräume.- 4. Das Auswahlaxiom.- 5. Die Struktur von beliebigen Vektorräumen.- 6. Vektorräume und ihre Unterraumverbände.- 7. Direkte Summen.- 8. Der Dualraum.- 9. Der Endoimorphismenring eines Vektorraumes.- V. Lineare Abbildungen und Matrizen.- 1. Darstellung von linearen Abbildungen durch Matrizen.- 2. Quatemionenschiefkörper.- 3. Duale Abbildungen.- 4. Systeme von linearen Gleichungen.- 5. Determinanten.- VI. Aus der Körpertheorie.- 1. Erweiterungskörper.- 2. Nullstellen von Polynomen.- 3. Galoisfeider.- 4. Symmetrische Funktionen.- 5. Die konplexen Zahlen.- 6. Ein Satz von Wedderburn.- VII. Normalformen von linearen Abbildungen und Matrizen.- 1. EndK(V) als K-Algebra.- 2. Eigenwerte.- 3. Hauptidealringe.- 4. Moduln über Hauptidealringen.- 5. Anwendungen auf lineare Abbildungen.