Funktionalanalysis hat sich in den letzten Jahrzehnten zu einer der wesentlichen Grundlagen der modernen angewandten Mathematik entwickelt, von der Theorie und Numerik von Differentialgleichungen über Optimierung und Wahrscheinlichkeitstheorie bis zu medizinischer Bildgebung und mathematischer Bildverarbeitung.
Das vorliegende Lehrbuch bietet eine kompakte Einführung in die Theorie und ist begleitend für eine vierstündige Vorlesung im Bachelorstudium konzipiert. Es spannt den Bogen von den topologischen Grundlagen aus der Analysis-Grundvorlesung bis zur Spektraltheorie in Hilberträumen; besondere Aufmerksamkeit wird dabei den zentralen Resultaten über Dualräume und schwache Konvergenz geschenkt.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.