Heinrich Labhart
Einführung in die Physikalische Chemie (eBook, PDF)
Teil V: Molekülspektroskopie
Mitwirkender: Haselbach, E.
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
21 °P sammeln
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
Als Download kaufen
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
21 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
Heinrich Labhart
Einführung in die Physikalische Chemie (eBook, PDF)
Teil V: Molekülspektroskopie
Mitwirkender: Haselbach, E.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 15.87MB
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 156
- Erscheinungstermin: 12. März 2013
- Deutsch
- ISBN-13: 9783642694349
- Artikelnr.: 53128465
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Einleitung.- 1.1. Beschreibung der Strahlung.- 1.2. Allgemeine Gesetze der Wechselwirkung von Strahlung mit Molekülen.- 1.3. Eine Gesamtheit von Molekülen im Strahlungsfeld.- 1.4. Unterteilung des Gebietes der Molekül- Spektroskopie.- 2. Magnetische Kernresonanz.- 2.1. Eigenschaften von Kernen.- 2.2. Kerne im Magnetfeld.- 2.3. Experimentelle Anordnungen zur Beobachtung der Kernresonanz.- 2.4. Das Magnetfeld am Ort der Kerne.- 2.5. Durch Bindungselektronen vermittelte Wechselwirkung zwischen Kernspins.- 2.6. Abhängigkeit der Kernresonanzspektren von der Bewegung der Moleküle.- 2.7. Quadrupoleffekte.- 2.8. Kernresonanzspektren in flüssiger Lösung.- 2.9. Signalform und kinetische Phänomene.- 3. Elektronenspinresonanz.- 3.1. Freies Elektron im Magnetfeld.- 3.2. Experimentelles.- 3.3. Das Elektronenspinresonanz-Spektrum von atomarem Wasserstoff.- 3.4. Aromatische Radikalionen.- 3.5. Alkyl-Radikale.- 3.6. Linienform und Relaxationseffekte.- 4. Übergänge zwischen Rotationszuständen.- 4.1. Das Rotationsspektrum von linearen Molekülen.- 4.2. Experimentelles.- 4.3. Rotationsspektren nicht linearer Moleküle.- 4.4. Auswertung von Rotationsspektren.- 5. Übergänge zwischen Vibrationszuständen.- 5.1. Das Vibrationsspektrum eines zweiatomigen Moleküls.- 5.2. Experimentelles zur IR-Spektroskopie.- 5.3. Das Rotations-Schwingungsspektrum von zweiatomigen Molekülen.- 5.4. Infrarotspektren mehratomiger Moleküle.- 5.5. Anwendungen der IR-Spektroskopie.- 5.6. Raman-Spektren.- 6. Übergänge zwischen Elektronenzuständen.- 6.1. Das Spektrum eines Elektrons im eindimensionalen Potentialkasten.- 6.2. Das Spektrum eines zweiatomigen Moleküls im Gaszustand.- 6.3. Spektren von mehratomigen Molekülen in Lösung.- 6.4. Charakterisierung von Absorptionsbanden in Lösung.- 6.5.Beobachtungsmaterial und seine Deutung im Hückelmodell.- 6.6. Desaktivierung von Molekülen in Lösung.- 6.7. Induzierte Emission, Laser.- 7. Photoelektronen-Spektroskopie.- 7.1. Prinzip.- 7.2. Experimentelles.- 7.3. UV-Photoelektronenspektren.- 7.4. Deutung von UV-Photoelektronenspektren im MO-Modell.- 7.5. X-Photoelektronenspektren (ESCA).- 8. Röntgenfluoreszenz-Spektroskopie.- 8.1. Prinzip.- 8.2. Experimentelles.- 8.3. Anwendung der Röntgenfluoreszenz- Spektroskopie.- 9. Mössbauer-Spektroskopie.- 9.1. Prinzip und Experimentelles.- 9.2. Anwendungen.- 10. Elektronenstoss-Spektroskopie.- 10.1. Prinzip.- 10.2. Experimentelles.- 10.3. Elektronenenergie-Verlust-Spektren.- 10.4. Elektronen-Transmissions-Spektren.- Anhang I Zur quantenmechanischen Behandlung der Wechselwirkung von Strahlung mit Molekülen.- Anhang II Berechnung von Übergangsmomenten für zweiatomige Moleküle.- 2. Umschlagseite: Internationales Mass-System (SI-Einheiten).- 3. Umschlagseite: Naturkonstanten.
1. Einleitung.- 1.1. Beschreibung der Strahlung.- 1.2. Allgemeine Gesetze der Wechselwirkung von Strahlung mit Molekülen.- 1.3. Eine Gesamtheit von Molekülen im Strahlungsfeld.- 1.4. Unterteilung des Gebietes der Molekül- Spektroskopie.- 2. Magnetische Kernresonanz.- 2.1. Eigenschaften von Kernen.- 2.2. Kerne im Magnetfeld.- 2.3. Experimentelle Anordnungen zur Beobachtung der Kernresonanz.- 2.4. Das Magnetfeld am Ort der Kerne.- 2.5. Durch Bindungselektronen vermittelte Wechselwirkung zwischen Kernspins.- 2.6. Abhängigkeit der Kernresonanzspektren von der Bewegung der Moleküle.- 2.7. Quadrupoleffekte.- 2.8. Kernresonanzspektren in flüssiger Lösung.- 2.9. Signalform und kinetische Phänomene.- 3. Elektronenspinresonanz.- 3.1. Freies Elektron im Magnetfeld.- 3.2. Experimentelles.- 3.3. Das Elektronenspinresonanz-Spektrum von atomarem Wasserstoff.- 3.4. Aromatische Radikalionen.- 3.5. Alkyl-Radikale.- 3.6. Linienform und Relaxationseffekte.- 4. Übergänge zwischen Rotationszuständen.- 4.1. Das Rotationsspektrum von linearen Molekülen.- 4.2. Experimentelles.- 4.3. Rotationsspektren nicht linearer Moleküle.- 4.4. Auswertung von Rotationsspektren.- 5. Übergänge zwischen Vibrationszuständen.- 5.1. Das Vibrationsspektrum eines zweiatomigen Moleküls.- 5.2. Experimentelles zur IR-Spektroskopie.- 5.3. Das Rotations-Schwingungsspektrum von zweiatomigen Molekülen.- 5.4. Infrarotspektren mehratomiger Moleküle.- 5.5. Anwendungen der IR-Spektroskopie.- 5.6. Raman-Spektren.- 6. Übergänge zwischen Elektronenzuständen.- 6.1. Das Spektrum eines Elektrons im eindimensionalen Potentialkasten.- 6.2. Das Spektrum eines zweiatomigen Moleküls im Gaszustand.- 6.3. Spektren von mehratomigen Molekülen in Lösung.- 6.4. Charakterisierung von Absorptionsbanden in Lösung.- 6.5.Beobachtungsmaterial und seine Deutung im Hückelmodell.- 6.6. Desaktivierung von Molekülen in Lösung.- 6.7. Induzierte Emission, Laser.- 7. Photoelektronen-Spektroskopie.- 7.1. Prinzip.- 7.2. Experimentelles.- 7.3. UV-Photoelektronenspektren.- 7.4. Deutung von UV-Photoelektronenspektren im MO-Modell.- 7.5. X-Photoelektronenspektren (ESCA).- 8. Röntgenfluoreszenz-Spektroskopie.- 8.1. Prinzip.- 8.2. Experimentelles.- 8.3. Anwendung der Röntgenfluoreszenz- Spektroskopie.- 9. Mössbauer-Spektroskopie.- 9.1. Prinzip und Experimentelles.- 9.2. Anwendungen.- 10. Elektronenstoss-Spektroskopie.- 10.1. Prinzip.- 10.2. Experimentelles.- 10.3. Elektronenenergie-Verlust-Spektren.- 10.4. Elektronen-Transmissions-Spektren.- Anhang I Zur quantenmechanischen Behandlung der Wechselwirkung von Strahlung mit Molekülen.- Anhang II Berechnung von Übergangsmomenten für zweiatomige Moleküle.- 2. Umschlagseite: Internationales Mass-System (SI-Einheiten).- 3. Umschlagseite: Naturkonstanten.