193,95 €
193,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
97 °P sammeln
193,95 €
193,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
97 °P sammeln
Als Download kaufen
193,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
97 °P sammeln
Jetzt verschenken
193,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
97 °P sammeln
  • Format: PDF

Electron backscatter diffraction (EBSD), when employed as an additional characterization technique to a scanning electron microscope (SEM), enables individual grain orientations, local texture, point-to-point orientation correlations, and phase identification and distributions to be determined routinely on the surfaces of bulk polycrystalline materials. The application has experienced rapid acceptance in metallurgical, materials, and geophysical laboratories within the past decade due to the wide availability of SEMs, the ease of sample preparation from the bulk, the high speed of data…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 26.44MB
Produktbeschreibung
Electron backscatter diffraction (EBSD), when employed as an additional characterization technique to a scanning electron microscope (SEM), enables individual grain orientations, local texture, point-to-point orientation correlations, and phase identification and distributions to be determined routinely on the surfaces of bulk polycrystalline materials. The application has experienced rapid acceptance in metallurgical, materials, and geophysical laboratories within the past decade due to the wide availability of SEMs, the ease of sample preparation from the bulk, the high speed of data acquisition, and the access to complimentary information about the microstructure on a submicron scale.

This entirely new second edition describes the complete EBSD technique, from the experimental set-up, representations of textures, and dynamical simulation, to energy-filtered, spherical, and 3-D EBSD, to phase identification, in situ experiments, strain mapping, and grain boundary networks, to the design and modeling of materials microstructures. Numerous application examples including the analysis of deformation microstructure, dynamic deformation and damage, and EBSD studies in the earth sciences provide details of this powerful materials characterization technique.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Adam J. Schwartz is the Deputy Division Leader for Condensed Matter and High Pressure Physics in the Physics and Advanced Technologies Directorate. Dr. Schwartz joined LLNL as a post-doctoral research associate to investigate the systematics of displacive phase transformations after receiving his PhD from the University of Pittsburgh in 1991. His areas of interests focus on structure-propoerty-processing relations, aging and phase transformations in actinides; influence of microstructure and impurities on high-strain rate deformation behavior, texture and texture gradients in materials, intercrystalline defects and the role of grain boundary character distribution in materials, conventional and high resolution transmission electron microscopy, and electron backscatter diffraction. Dr. Schwartz has authored over 50 publications and has one patent. Mukul Kumar joined as a staff scientist in the Materials Science and Technology Division in 1998 after completing a stint as a post-doctoral fellow at Johns Hopkins University. Prior to that, he received his PhD from the University of Cincinnati, where he was an Oak Ridge Institute for Science and Engineering Fellow and also received the ASM International Arthur Focke Award for his dissertation work. His areas of interest include the relationship between properties and microstructures, particularly as related to extreme environments encountered in turbine jet engine and nuclear reactor environments and high strain rate and pressure conditions; defect analysis using conventional transmission electron microscopy; and electron backscatter diffraction. Kumar has authored over 70 publications and has two patents.