Electron Paramagnetic Resonance (eBook, PDF)
Elementary Theory and Practical Applications
Alle Infos zum eBook verschenken
Electron Paramagnetic Resonance (eBook, PDF)
Elementary Theory and Practical Applications
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book provides an introduction to the underlying theory, fundamentals, and applications of EPR spectroscopy, as well as new developments in the area. Knowledge of the topics presented will allow the reader to interpret of a wide range of EPR spectra, as well as help them to apply EPR techniques to problem solving in a wide range of areas: organic, inorganic, biological, and analytical chemistry; chemical physics, geophysics, and minerology. * Includes updated information on high frequency and multi-frequency EPR, pulsed microwave techniques and spectra analysis, dynamic effects, relaxation…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 5.17MB
- Electron Paramagnetic Resonance (eBook, PDF)141,99 €
- Raman Spectroscopy for Soft Matter Applications (eBook, PDF)112,99 €
- Ricardo ArocaSurface-Enhanced Vibrational Spectroscopy (eBook, PDF)140,99 €
- Ron JenkinsX-Ray Fluorescence Spectrometry (eBook, PDF)168,99 €
- John F. WattsAn Introduction to Surface Analysis by XPS and AES (eBook, PDF)71,99 €
- Peter GriffithsFourier Transform Infrared Spectrometry (eBook, PDF)147,99 €
- Isao NodaTwo-Dimensional Correlation Spectroscopy (eBook, PDF)195,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 688
- Erscheinungstermin: 20. August 2007
- Englisch
- ISBN-13: 9780470084977
- Artikelnr.: 37290490
- Verlag: John Wiley & Sons
- Seitenzahl: 688
- Erscheinungstermin: 20. August 2007
- Englisch
- ISBN-13: 9780470084977
- Artikelnr.: 37290490
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
. 2.5 Energy Levels of a System with S =
and I = 1. 2.6 Signs of Isotropic Hyperfine Coupling Constants. 2.7 Dipolar Interactions Between Electrons. References. Notes. Further Reading. Problems. 3 ISOTROPIC HYPERFINE EFFECTS IN EPR SPECTRA. 3.1 Introduction. 3.2 Hyperfine Splitting from Protons. 3.3 Hyperfine Splittings from Other Nuclei with I =
. >
. 3.5 Useful Rules for the Interpretation of EPR Spectra. 3.6 Higher-Order Contributions to Hyperfine Splittings. 3.7 Deviations from the Simple Multinomial Scheme. 3.8 Other Problems Encountered in EPR Spectra of Free Radicals. 3.9 Some Interesting p-Type Free Radicals. References. Notes. Further Reading. Problems. 4 ZEEMAN ENERGY (g) ANISOTROPY. 4.1 Introduction. 4.2 Systems with High Local Symmetry. 4.3 Systems with Rhombic Local Symmetry. 4.4 Construction of the g Matrix. 4.5 Symmetry-Related Sites. 4.6 EPR Line Intensities. 4.7 Statistically Randomly Oriented Solids. 4.8 Spin-Orbit Coupling and Quantum-Mechanical Modeling of g. 4.9 Comparative Overview. References. Notes. Further Reading. Problems. 5 HYPERFINE (A) ANISOTROPY. 5.1 Introduction. 5.2 Origin of the Anisotropic Part of the Hyperfine Interaction. 5.3 Determination and Interpretation of the Hyperfine Matrix. 5.4 Combined g and Hyperfine Anisotropy. 5.5 Multiple Hyperfine Matrices. 5.6 Systems With I >
. 5.7 Hyperfine Powder Lineshapes. References. Notes. Further Reading. Problems. 6 SYSTEMS WITH MORE THAN ONE UNPAIRED ELECTRON. 6.1 Introduction. 6.2 Spin Hamiltonian for Two Interacting Electrons. 6.3 Systems with S = 1 (Triplet States). 6.4 Interacting Radical Pairs. 6.5 Biradicals. > 1. 6.7 High-Spin and High-Field Energy Terms. 6.8 The Spin Hamiltonian: A Summing up. 6.9 Modeling the Spin-Hamiltonian Parameters. References. Notes. Further Reading. Problems. 7 PARAMAGNETIC SPECIES IN THE GAS PHASE. 7.1 Introduction. 7.2 Monatomic Gas-Phase Species. 7.3 Diatomic Gas-Phase Species. 7.4 Triatomic and Polyatomic Gas-Phase Molecules. 7.5 Laser Electron Paramagnetic Resonance. 7.6 Other Techniques. 7.7 Reaction Kinetics. 7.8 Astro-EPR. References. Notes. Further Reading. Problems. 8 TRANSITION-GROUP IONS. 8.1 Introduction. 8.2 The Electronic Ground States of d-Electron Species. 8.3 The EPR Parameters of d-Electron Species. 8.4 Tanabe-Sugano Diagrams and Energy-Level Crossings. 8.5 Covalency Effects. 8.6 A Ferroelectric System. 8.7 Some f-Electron Systems. References. Notes. Further Reading. Problems. 9 THE INTERPRETATION OF EPR PARAMETERS. 9.1 Introduction. 9.2 π-Type Organic Radicals. 9.3 σ-Type Organic Radicals. 9.4 Triplet States and Biradicals. 9.5 Inorganic Radicals. 9.6 Electrically Conducting Systems. 9.7 Techniques for Structural Estimates from EPR Data. References. Notes. Further Reading. Problems. Appendix 9A Hückel Molecular-Orbital Calculations. HMO References. HMO Problems. 10 RELAXATION TIMES, LINEWIDTHS AND SPIN KINETIC PHENOMENA. 10.1 Introduction. 10.2 Spin Relaxation: General Aspects. 10.3 Spin Relaxation: Bloch Model. 10.4 Linewidths. 10.5 Dynamic Lineshape Effects. 10.6 Longitudinal Detection. 10.7 Saturation-Transfer EPR. 10.8 Time Dependence of the EPR Signal Amplitude. 10.9 Dynamic Nuclear Polarization. 10.10 Bio-Oxygen. 10.11 Summary. References. Notes. Further Reading. Problems. 11 NONCONTINUOUS EXCITATION OF SPINS. 11.1 Introduction. 11.2 The Idealized B1 Switch-on. 11.3 The Single B1 Pulse. 11.4 Fourier-Transform EPR and FID Analysis. 11.5 Multiple Pulses. 11.6 Electron Spin-Echo Envelope Modulation. 11.7 Advanced Techniques. 11.8 Spin Coherence and Correlation. References. Notes. Further Reading . Problems. 12 DOUBLE-RESONANCE TECHNIQUES. 12.1 Introduction. 12.2 A Continuous-Wave ENDOR Experiment. 12.3 Energy Levels and ENDOR Transitions. 12.4 Relaxation Processes in Steady-State ENDOR5. 12.5 CW ENDOR: Single-Crystal Examples. 12.6 CW ENDOR in Powders and Non-Crystalline Solids. 12.7 CW ENDOR in Liquid Solutions. 12.8 Pulse Double-Resonance Experiments. 12.9 Electron-Electron Double Resonance (ELDOR). 12.10 Optically Detected Magnetic Resonance. 12.11 Fluorescence-Detected Magnetic Resonance. References. Notes. Further Reading. Problems. 13 OTHER TOPICS. 13.1 Apologia . 13.2 Biological Systems. 13.3 Clusters. 13.4 Charcoal, Coal, Graphite and Soot . 13.5 Colloids. 13.6 Electrochemical EPR. 13.7 EPR Imaging. 13.8 Ferromagnets, Antiferromagnets and Superparamagnets. 13.9 Glasses. 13.10 Geologic/Mineralogic Systems and Selected Gems. 13.11 Liquid Crystals. 3.12 "Point" Defects. 13.13 Polymers. 13.14 Radiation Dosage and Dating. 13.15 Spin Labels. 13.16 Spin Traps. 13.17 Trapped Atoms and Molecules. APPENDIX A MATHEMATICAL OPERATIONS. A.1 Complex Numbers. A.2 Operator Algebra. A.3 Determinants. A.4 Vectors: Scalar, Vector, and Outer Products. A.5 Matrices. A.6 Perturbation Theory. A.7 Dirac Delta Function. A.8 Group Theory. References. Notes. Further Reading. Problems. APPENDIX B QUANTUM MECHANICS OF ANGULAR MOMENTUM. B.1 Introduction. B.2 Angular-Momentum Operators. B.3 Commutation Relations for General Angular-Momentum Operators. B.4 Eigenvalues of J2 and Jz. B.5 Superposition of States. B.6 Angular-Momentum Matrices. B.7 Addition of Angular Momenta. B.8 Notation for Atomic and Molecular States. B.9 Angular Momentum and Degeneracy of States. B.10 Time Dependence. B.11 Precession. B.12 Magnetic Flux Quantization. B.13 Summary. References. Notes. Further Reading. Problems. Notes for Problem B.12. APPENDIX C THE HYDROGEN ATOM AND SELECTED RADICALS RHn. C.1 Hydrogen Atom. C.2 RH Radicals. C.3 RH2 Radicals. References. Notes. Further Reading. Problems. APPENDIX D PHOTONS. D.1 Introduction. D.2 The Physical Aspects of Photons. D.3 Magnetic-Resonance Aspects. References. Notes. APPENDIX E INSTRUMENTATION AND TECHNICAL PERFORMANCE. E.1 Instrumental: Background. E.2 CW EPR Spectrometers. E.3 Pulsed EPR Spectrometers. E.4 Computer Interfacing with EPR Spectrometers. E.5 Techniques for Temperature Variation and Control. E.6 Techniques for Pressure Variation. References. Notes. Further Reading. Problems. APPENDIX F EXPERIMENTAL CONSIDERATIONS. F.1 Techniques for Generation of Paramagnetic Species. F.2 Lineshapes and Intensities. F.3 Sensitivity and Resolution. F.4 Measurements. References. Notes. Further Reading. Problems. APPENDIX G EPR-RELATED BOOKS AND SELECTED CHAPTERS. APPENDIX H FUNDAMENTAL CONSTANTS, CONVERSION FACTORS, AND KEY DATA. APPENDIX I MISCELLANEOUS GUIDELINES. I.1 Notation for Symbols. I.2 Glossary of Symbols. I.3 Abbreviations. I.4 Exponent Nomenclature. I.5 Journal Reference Style. Author Index. Subject Index.
. 2.5 Energy Levels of a System with S =
and I = 1. 2.6 Signs of Isotropic Hyperfine Coupling Constants. 2.7 Dipolar Interactions Between Electrons. References. Notes. Further Reading. Problems. 3 ISOTROPIC HYPERFINE EFFECTS IN EPR SPECTRA. 3.1 Introduction. 3.2 Hyperfine Splitting from Protons. 3.3 Hyperfine Splittings from Other Nuclei with I =
. >
. 3.5 Useful Rules for the Interpretation of EPR Spectra. 3.6 Higher-Order Contributions to Hyperfine Splittings. 3.7 Deviations from the Simple Multinomial Scheme. 3.8 Other Problems Encountered in EPR Spectra of Free Radicals. 3.9 Some Interesting p-Type Free Radicals. References. Notes. Further Reading. Problems. 4 ZEEMAN ENERGY (g) ANISOTROPY. 4.1 Introduction. 4.2 Systems with High Local Symmetry. 4.3 Systems with Rhombic Local Symmetry. 4.4 Construction of the g Matrix. 4.5 Symmetry-Related Sites. 4.6 EPR Line Intensities. 4.7 Statistically Randomly Oriented Solids. 4.8 Spin-Orbit Coupling and Quantum-Mechanical Modeling of g. 4.9 Comparative Overview. References. Notes. Further Reading. Problems. 5 HYPERFINE (A) ANISOTROPY. 5.1 Introduction. 5.2 Origin of the Anisotropic Part of the Hyperfine Interaction. 5.3 Determination and Interpretation of the Hyperfine Matrix. 5.4 Combined g and Hyperfine Anisotropy. 5.5 Multiple Hyperfine Matrices. 5.6 Systems With I >
. 5.7 Hyperfine Powder Lineshapes. References. Notes. Further Reading. Problems. 6 SYSTEMS WITH MORE THAN ONE UNPAIRED ELECTRON. 6.1 Introduction. 6.2 Spin Hamiltonian for Two Interacting Electrons. 6.3 Systems with S = 1 (Triplet States). 6.4 Interacting Radical Pairs. 6.5 Biradicals. > 1. 6.7 High-Spin and High-Field Energy Terms. 6.8 The Spin Hamiltonian: A Summing up. 6.9 Modeling the Spin-Hamiltonian Parameters. References. Notes. Further Reading. Problems. 7 PARAMAGNETIC SPECIES IN THE GAS PHASE. 7.1 Introduction. 7.2 Monatomic Gas-Phase Species. 7.3 Diatomic Gas-Phase Species. 7.4 Triatomic and Polyatomic Gas-Phase Molecules. 7.5 Laser Electron Paramagnetic Resonance. 7.6 Other Techniques. 7.7 Reaction Kinetics. 7.8 Astro-EPR. References. Notes. Further Reading. Problems. 8 TRANSITION-GROUP IONS. 8.1 Introduction. 8.2 The Electronic Ground States of d-Electron Species. 8.3 The EPR Parameters of d-Electron Species. 8.4 Tanabe-Sugano Diagrams and Energy-Level Crossings. 8.5 Covalency Effects. 8.6 A Ferroelectric System. 8.7 Some f-Electron Systems. References. Notes. Further Reading. Problems. 9 THE INTERPRETATION OF EPR PARAMETERS. 9.1 Introduction. 9.2 π-Type Organic Radicals. 9.3 σ-Type Organic Radicals. 9.4 Triplet States and Biradicals. 9.5 Inorganic Radicals. 9.6 Electrically Conducting Systems. 9.7 Techniques for Structural Estimates from EPR Data. References. Notes. Further Reading. Problems. Appendix 9A Hückel Molecular-Orbital Calculations. HMO References. HMO Problems. 10 RELAXATION TIMES, LINEWIDTHS AND SPIN KINETIC PHENOMENA. 10.1 Introduction. 10.2 Spin Relaxation: General Aspects. 10.3 Spin Relaxation: Bloch Model. 10.4 Linewidths. 10.5 Dynamic Lineshape Effects. 10.6 Longitudinal Detection. 10.7 Saturation-Transfer EPR. 10.8 Time Dependence of the EPR Signal Amplitude. 10.9 Dynamic Nuclear Polarization. 10.10 Bio-Oxygen. 10.11 Summary. References. Notes. Further Reading. Problems. 11 NONCONTINUOUS EXCITATION OF SPINS. 11.1 Introduction. 11.2 The Idealized B1 Switch-on. 11.3 The Single B1 Pulse. 11.4 Fourier-Transform EPR and FID Analysis. 11.5 Multiple Pulses. 11.6 Electron Spin-Echo Envelope Modulation. 11.7 Advanced Techniques. 11.8 Spin Coherence and Correlation. References. Notes. Further Reading . Problems. 12 DOUBLE-RESONANCE TECHNIQUES. 12.1 Introduction. 12.2 A Continuous-Wave ENDOR Experiment. 12.3 Energy Levels and ENDOR Transitions. 12.4 Relaxation Processes in Steady-State ENDOR5. 12.5 CW ENDOR: Single-Crystal Examples. 12.6 CW ENDOR in Powders and Non-Crystalline Solids. 12.7 CW ENDOR in Liquid Solutions. 12.8 Pulse Double-Resonance Experiments. 12.9 Electron-Electron Double Resonance (ELDOR). 12.10 Optically Detected Magnetic Resonance. 12.11 Fluorescence-Detected Magnetic Resonance. References. Notes. Further Reading. Problems. 13 OTHER TOPICS. 13.1 Apologia . 13.2 Biological Systems. 13.3 Clusters. 13.4 Charcoal, Coal, Graphite and Soot . 13.5 Colloids. 13.6 Electrochemical EPR. 13.7 EPR Imaging. 13.8 Ferromagnets, Antiferromagnets and Superparamagnets. 13.9 Glasses. 13.10 Geologic/Mineralogic Systems and Selected Gems. 13.11 Liquid Crystals. 3.12 "Point" Defects. 13.13 Polymers. 13.14 Radiation Dosage and Dating. 13.15 Spin Labels. 13.16 Spin Traps. 13.17 Trapped Atoms and Molecules. APPENDIX A MATHEMATICAL OPERATIONS. A.1 Complex Numbers. A.2 Operator Algebra. A.3 Determinants. A.4 Vectors: Scalar, Vector, and Outer Products. A.5 Matrices. A.6 Perturbation Theory. A.7 Dirac Delta Function. A.8 Group Theory. References. Notes. Further Reading. Problems. APPENDIX B QUANTUM MECHANICS OF ANGULAR MOMENTUM. B.1 Introduction. B.2 Angular-Momentum Operators. B.3 Commutation Relations for General Angular-Momentum Operators. B.4 Eigenvalues of J2 and Jz. B.5 Superposition of States. B.6 Angular-Momentum Matrices. B.7 Addition of Angular Momenta. B.8 Notation for Atomic and Molecular States. B.9 Angular Momentum and Degeneracy of States. B.10 Time Dependence. B.11 Precession. B.12 Magnetic Flux Quantization. B.13 Summary. References. Notes. Further Reading. Problems. Notes for Problem B.12. APPENDIX C THE HYDROGEN ATOM AND SELECTED RADICALS RHn. C.1 Hydrogen Atom. C.2 RH Radicals. C.3 RH2 Radicals. References. Notes. Further Reading. Problems. APPENDIX D PHOTONS. D.1 Introduction. D.2 The Physical Aspects of Photons. D.3 Magnetic-Resonance Aspects. References. Notes. APPENDIX E INSTRUMENTATION AND TECHNICAL PERFORMANCE. E.1 Instrumental: Background. E.2 CW EPR Spectrometers. E.3 Pulsed EPR Spectrometers. E.4 Computer Interfacing with EPR Spectrometers. E.5 Techniques for Temperature Variation and Control. E.6 Techniques for Pressure Variation. References. Notes. Further Reading. Problems. APPENDIX F EXPERIMENTAL CONSIDERATIONS. F.1 Techniques for Generation of Paramagnetic Species. F.2 Lineshapes and Intensities. F.3 Sensitivity and Resolution. F.4 Measurements. References. Notes. Further Reading. Problems. APPENDIX G EPR-RELATED BOOKS AND SELECTED CHAPTERS. APPENDIX H FUNDAMENTAL CONSTANTS, CONVERSION FACTORS, AND KEY DATA. APPENDIX I MISCELLANEOUS GUIDELINES. I.1 Notation for Symbols. I.2 Glossary of Symbols. I.3 Abbreviations. I.4 Exponent Nomenclature. I.5 Journal Reference Style. Author Index. Subject Index.