Electrospun Materials and Their Allied Applications (eBook, PDF)
Redaktion: Inamuddin; Asiri, Abdullah M.; Ahamed, Mohd Imran; Boddula, Rajender
Alle Infos zum eBook verschenken
Electrospun Materials and Their Allied Applications (eBook, PDF)
Redaktion: Inamuddin; Asiri, Abdullah M.; Ahamed, Mohd Imran; Boddula, Rajender
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The aim of this book is to explore the history, fundamentals, manufacturing processes, optimization parameters, and applications of electrospun materials. The book includes various types of electrospun materials such as antimicrobial, smart, bioinspired systems. It focuses on the many application areas for electrospun materials such as energy storage and harvesting, catalysis, biomedical including gene delivery and tissue engineering, separation, adsorption and water treatment technologies, packaging. The book emphasizes the enhanced sustainable properties of electrospun materials, with the…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 65.32MB
- Layered 2D Materials and Their Allied Applications (eBook, PDF)197,99 €
- Advanced Textile Engineering Materials (eBook, PDF)190,99 €
- Frontiers of Textile Materials (eBook, PDF)197,99 €
- Nicolas Alonso-VanteFundamentals of Electrocatalyst Materials and Interfacial Characterization (eBook, PDF)164,99 €
- Yves RemondApplied RVE Reconstruction and Homogenization of Heterogeneous Materials (eBook, PDF)139,99 €
- Novel Carbon Materials and Composites (eBook, PDF)134,99 €
- Pierre-Richard DahooApplications and Metrology at Nanometer-Scale 2 (eBook, PDF)139,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 544
- Erscheinungstermin: 17. April 2020
- Englisch
- ISBN-13: 9781119655107
- Artikelnr.: 59312515
- Verlag: John Wiley & Sons
- Seitenzahl: 544
- Erscheinungstermin: 17. April 2020
- Englisch
- ISBN-13: 9781119655107
- Artikelnr.: 59312515
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Electrospinning Fabrication Strategies: From Conventional to Advanced
Approaches 1
J.R. Dias, Alexandra I. F. Alves, Carolina A. Marzia-Ferreira and Nuno M.
Alves
1.1 Introduction 2
1.2 Conventional Fabrication Approaches 3
1.2.1 Randomly Oriented Fiber Meshes 3
1.2.2 Aligned Fiber Meshes 8
1.2.3 Fibers With Core/Shell Structure 14
1.3 Advanced Fabrication Approaches 19
1.3.1 Melt Electrospinning 19
1.3.2 Near Field Electrospinning 22
1.3.3 Electroblowing 23
1.3.4 Hybrid Structures 25
1.3.5 Cell Electrospinning 30
1.3.6 In Situ Electrospinning 33
1.4 Conclusions and Future Perspectives 36
Acknowledgments 37
References 37
2 History, Basics, and Parameters of Electrospinning Technique 53
Aysel Kantürk Figen
2.1 Definitions 53
2.2 Milestone of Electrospinning Technique 54
2.3 Setup and Configuration of Electrospinning Technique 56
2.4 Parameters 59
2.4.1 Polymer Solutions 59
2.4.2 Spin Parameters 62
2.4.3 Environmental Parameters 63
2.5 Concluding Remarks 64
References 65
3 Physical Characterization of Electrospun Fibers 71
Anushka Purabgola and Balasubramanian Kandasubramanian
3.1 Introduction 72
3.2 Characterization Techniques 76
3.2.1 Scanning Electron Microscopy (SEM) 76
3.2.2 Field Emission Scanning Electron Microscopy (FESEM) 77
3.2.3 Transmission Electron Microscopy (TEM) 79
3.2.4 High-Resolution TEM (HRTEM) 80
3.2.5 Atomic Force Microscopy (AFM) 81
3.2.6 X-Ray Diffraction (XRD) 83
3.2.7 Nanoindentation 84
3.2.8 Differential Scanning Calorimetry (DSC) 85
3.2.9 Thermalgravimetric Analysis (TGA) 85
3.3 Physical Characterization of Electrospun Fibers 87
3.3.1 Electrospun Polymer Nanofibers 87
3.3.1.1 Polyacrylonitrile (PAN) Nanofiber 87
3.3.1.2 Polyvinylidene Fluoride (PVDF) Fibrous Nanofibers 91
3.3.1.3 Polydodecylthiophene (PDT) Core-Polyethylene Oxide (PEO) Shell
Polymer Nanofiber 92
3.3.1.4 Polymethylmethacrylate (PMMA) Nanofiber 92
3.3.2 Electrospun Metal (Oxide) Nanofiber 94
3.3.2.1 Polyvinyl Alcohol (PVA)/Nickel Acetate 95
3.3.2.2 Polyvinyl Pyrrolidone (PVP)/TiO2 Nanofibers 96
3.3.2.3 Polyethylene Oxide/Polyvinylpyrrolidone-Iron Oxide Nanofiber 96
3.3.3 Electrospun Nanocomposite Nanofibers 97
3.3.3.1 TiO2/SiO2/C (TSC) Nanofibers 98
3.3.3.2 Polyvinylidene Fluoride (PVDF)/ZnO Nanocomposite Nanofiber 100
3.3.3.3 Polyvinyl Alcohol (PVA)/Cellulose Nanocrystals Composite Nanofibers
101
3.3.4 Electrospun Carbon Nanofibers (CNFs) 104
3.3.4.1 Polyacrylonitrile (PAN)/N-Doped CNFs 104
3.3.4.2 Lignan-Derived CNFs/PAN 104
3.3.4.3 Poly(L-Laticide-Co- -Caprolactone) (PLCL)/MWCNTs Nanofibers 105
3.4 Conclusion 108
References 109
4 Application of Electrospun Materials in Catalysis 113
Bilge Cökuner Filiz
4.1 Introduction 113
4.2 Type of Catalysts 115
4.2.1 Catalyst Supports 115
4.2.2 Template for Catalytic Nanotubes 116
4.2.3 Metal Oxide Catalysts 117
4.3 Catalytic Applications 117
4.3.1 Energy Field 118
4.3.1.1 Oxidation Reactions 118
4.3.1.2 Reduction Reactions 119
4.3.1.3 Hydrogen Generation Reactions 120
4.3.2 Environment Field 121
4.3.2.1 Oxidation Reactions 121
4.3.2.2 Reduction Reactions 122
4.3.2.3 Degradation Reactions 122
4.4 Conclusion 124
References 125
5 Application of Electrospun Materials in Packaging Industry 131
Samson Rwahwire, Catherine Namuga and Nibikora Ildephonse
5.1 Packaging Industry 131
5.2 Electrospinning 132
5.3 Nanofibers 135
5.4 Biopolymers 135
5.4.1 Nanoencapsulation 135
5.4.2 Methods of Encapsulation Application in Food Packaging 139
5.4.3 Drying 140
5.4.4 Nano-Enabled Packaging Solutions 140
5.4.5 Food Packaging 141
5.4.6 Active Food Packaging 142
5.5 Future Perspectives 144
References 145
6 Application of Electrospun Materials in Water Treatment 151
Shivani Rastogi and Balasubramanian Kandasubramanian
6.1 Introduction 152
6.2 Heavy Metal Ion Removal From Wastewater 154
6.2.1 Cellulose/Camphor Soot Nanofibers 157
6.2.2 Spider-Web Textured Electrospun Graphene Composite Fibers 158
6.2.3 Resorcinol-Formaldehyde Nanofibers 161
6.2.4 Ion-Imprinted Chitosan/1-Butyl-3-Methylimidazolium Tetrafluoroborate
Fibers 162
6.2.5 Molecular Imprinted Camphor Soot Functionalized PAN Nanofibers 164
6.2.6 Iron Functionalized Chitosan Electrospun NFs (ICS-ENF) 166
6.2.7 Cellulose/Organically Modified Montmorillonite 166
6.3 Dye Removal From Wastewater 167
6.3.1 Zein Nanofibers 167
6.3.2 ß-Cyclodextrin Based Nanofibers 169
6.3.3 3-Mercapto Propionic Acid Coated Fe3O4 NP Immobilized Amidoximated
Polyacrylonitrile 171
6.3.4 Functionalized Polyacrylonitrile Membrane 171
6.4 Oil-Water Separation 172
6.4.1 Wettable Cotton-Based Janus Bio Fabric (PLA/Functionalized
Organoclay) 172
6.4.2 Camphor Soot Immobilized Fluoroelastomer Membrane 174
6.4.3 Polycaprolactone/Beeswax Membrane 174
6.5 Microbe Elimination From Wastewater 176
6.5.1 ß-Cyclodextrin/Cellulose Acetate Embedded Ag and Ag/Fe Nanoparticles
176
6.5.2 Silver Coated Polyacrylonitrile (PAN) Membrane 177
6.6 Antibiotic Removal From Wastewater 178
6.7 Conclusion 180
References 180
7 Application of Electrospun Materials in Oil-Water Separations 185
T.C. Mokhena, M.J. John, M.J. Mochane and P.C. Tsipa
7.1 Introduction 185
7.2 Oil Spill Clean-Up 187
7.2.1 Hydrophobic-Oleophilic Polymer Nanofiber 187
7.2.2 Blends 191
7.2.3 Composites 194
7.3 Separation Membranes 195
7.4 Thin-Film Composite (TFC) Membranes 202
7.5 Three Dimensional (3D) Nanofibrous Membranes 203
7.6 Smart Membranes 204
7.7 Conclusions and Future Trends 208
Acknowledgments 209
References 209
8 Application of Electrospun Materials in Industrial Applications 215
Anisa Andleeb and Muhammad Yar
8.1 Introduction 216
8.2 Technology Transfer From Research Laboratories to Industries 218
8.3 Industrial Applications of Electrospun Materials 220
8.3.1 Biomedical Materials 221
8.3.2 Defense and Security 227
8.3.3 Textile Industry 227
8.3.4 Catalyst 228
8.3.5 Energy Harvest 229
8.3.6 Filtration 230
8.3.7 Sensor Applications 232
8.3.8 Food 234
8.4 Current and Future Developments 236
References 237
9 Antimicrobial Electrospun Materials 243
Samson Afewerki, Guillermo U. Ruiz-Esparza and Anderson O. Lobo
9.1 Introduction 244
9.1.1 Electrospinning Technology 244
9.1.2 Antimicrobial Materials 246
9.1.3 Antimicrobial Electrospun Materials 246
9.1.4 Conclusions and Future Directions 254
Acknowledgments 255
References 255
10 Application of Electrospun Materials in Gene Delivery 265
GSN Koteswara Rao, Mallesh Kurakula and Khushwant S. Yadav
10.1 Introduction 266
10.2 Gene Therapy 266
10.3 Cellular Uptake of Nonviral Gene Delivery 268
10.4 Vectors 269
10.4.1 Viral Vectors 269
10.4.2 Nonviral Vectors 270
10.4.3 Delivery of Genes through Vectors 271
10.5 Nanofibers/Scaffolds 273
10.6 Electrospinning 275
10.6.1 Steps Involved in the Electrospinning Process 276
10.6.2 Types of Electrospinning 279
10.7 Characterization 281
10.8 Applications of Electrospun Materials 282
10.8.1 Electrospun Materials in Gene Delivery 282
10.8.1.1 Tissue Engineering 282
10.8.1.2 Regenerative Medicine 284
10.8.1.3 Vascular Grafts 284
10.8.1.4 Bone Regeneration 285
10.8.1.5 Diabetic Ulcer Treatment 286
10.8.1.6 Cancer Treatment 287
10.8.1.7 Blood Vessel Regeneration 287
10.8.1.8 Wound Management 288
10.8.1.9 Carrier for Genetic Material Loaded Nanoparticles 288
10.8.1.10 Myocardial Infarction Treatment 288
10.8.1.11 Stem Cell-Based Therapy 289
10.8.1.12 Gene Silencing 289
10.8.1.13 Controlled Release of Gene 290
10.8.1.14 DNA Delivery 290
10.8.2 Electrospun Materials in Drug Delivery 291
10.8.2.1 Antibiotics and Various Antibacterial Agents 292
10.8.2.2 Anticancer Drugs 292
10.8.2.3 Cancer Diagnosis 292
10.8.2.4 Wound Management 293
10.8.2.5 Tissue Engineering 293
10.8.2.6 Bone Tissue Engineering 293
10.8.2.7 Dental Growth 294
10.8.2.8 Therapeutic Delivery Systems 294
10.8.3 Electrospun Materials in Miscellaneous Applications 294
10.9 Future Scope and Challenges 296
10.10 Conclusion 296
References 297
11 Application of Electrospun Materials in Bioinspired Systems 307
Anca Filimon, Adina Maria Dobos, Oana Dumbrava and Adriana Popa
11.1 Introduction 308
11.2 Composite Materials Based on Cellulosic Nanofibers 309
11.2.1 Processing of Cellulose-Based Materials 310
11.2.2 Structure-Property-Biological Activity Relationship 310
11.2.2.1 Biosensors Based on Cellulosic Fibers 310
11.2.2.2 Delivery Systems and Controlled Release of Drugs 312
11.2.2.3 Wound Dressing 316
11.2.2.4 Tissue Engineering 317
11.3 Chitosan Nanofibrous Scaffolds 322
11.3.1 Overview on Obtained Chitosan From Bio-Waste Source 322
11.3.2 Specific Applications of Chitosan Nanofibers in Bio Inspired Systems
325
11.3.2.1 Wound Dressing 325
11.3.2.2 Drug Delivery 329
11.3.2.3 Tissue Engineering 330
11.3.2.4 Antibacterial Activity 336
11.4 Conclusions 339
References 339
12 Smart Electrospun Materials 351
Gaurav Sharma, Shivani Rastogi and Balasubramanian Kandasubramanian
12.1 Introduction 352
12.2 Smart Electrospun Materials in Biomedical Applications 354
12.2.1 Tissue Engineering 354
12.2.2 Controlled Drug Delivery 355
12.2.3 Wound Healing 356
12.3 Smart Electrospun Materials for Environmental Remediation 357
12.3.1 Water Pollution Control 357
12.3.2 Air Pollution Control 359
12.3.3 Noise Pollution Control 360
12.4 Smart Electrospun Materials in Electronics 361
12.4.1 Solar Cell 361
12.4.2 Energy Harvesters 362
12.4.3 Shape-Memory Polymers 363
12.4.4 Batteries and Supercapacitors 364
12.4.5 Sensors, Transistors, and Diodes 366
12.5 Smart Electrospun Materials in Textiles 368
12.5.1 Biomedical Parameter Regulation 368
12.5.2 Protection from Environment Threat 369
12.5.3 Energy Harvesters in Textiles 370
12.5.4 Smart Textile Project 370
12.6 Smart Electrospun Materials in Food Packaging 371
12.7 Conclusion 372
References 373
13 Advances in Electrospinning Technique in the Manufacturing Process of
Nanofibrous Materials 379
Karine Cappuccio de Castro, Josiel Martins Costa and Lucia Helena
Innocentini Mei
13.1 Introduction 380
13.2 Process 380
13.3 Important Parameters 382
13.3.1 Effects of the Applied Tension 382
13.3.2 Effects of Solution Eject Rate 382
13.3.3 Effects of Needle-to-Collector Distance and Needle Diameter 384
13.3.4 Effects of Solution Concentration and Viscosity 384
13.3.5 Effects of Solution Conductivity 385
13.3.6 Solvent Effects 385
13.3.7 Effects of Surface Tension 385
13.3.8 Humidity and Temperature Effects 386
13.4 Recent Advances in the Technique 386
13.4.1 Electrospinning Coaxial 386
13.4.2 Electrospinning Triaxial 387
13.4.3 Multiple Needle Electrospinning 387
13.4.4 Electroblowing 387
13.4.5 Magnetic Electrospinning 388
13.4.6 Centrifugal Electrospinning 388
13.4.7 Needleless Electrospinning 388
13.5 Coaxial Electrospinning as an Excellent Process for Hollow Fiber and
Drug Delivery Device Production 389
13.6 Applications 390
13.7 Conclusions and Future Perspectives 393
References 393
14 Application of Electrospun Materials in Filtration and Sorbents 401
T.S. Motsoeneg, T.E. Mokoena, T.C. Mokhena and M.J. Mochane
14.1 Introduction 402
14.2 Morphology of Sorbents With Concomitant Sorption Capacity 403
14.3 Mechanistic Overview in Purification During Filtration 406
14.4 Conclusion and Future Prospects 410
References 411
15 Application of Electrospun Materials in Batteries 415
Subhash B. Kondawar and Monali V. Bhute
15.1 Introduction 416
15.2 Electrospun Nanofibers as Anodes 418
15.2.1 Carbon Nanofibers as Anode 418
15.2.2 Metal Oxide Nanofibers as Anode 419
15.3 Electrospun Nanofibers as Cathode 423
15.3.1 Lithium Metal Oxide Nanofibers as Cathode 423
15.3.2 Transition Metal Oxides Nanofibers as Cathode 424
15.4 Electrospun Nanofibers as Separator 425
15.4.1 Polymer Nanofibers as Separator 426
15.4.2 Polymer-Inorganic Nanofiber Separators 430
15.5 Conclusions and Outlook 432
References 433
16 State-of-the-Art and Future Electrospun Technology 441
Prasansha Rastogi and Balasubramanian Kandasubramanian
16.1 Introduction 442
16.2 Some General Smart Applications of Electrospun Membranes 445
16.3 Stimuli Responsive or Shape Memory Electrospun Membranes 454
16.4 Conclusion 473
Acknowledgment 474
References 474
17 Antimicrobial Electrospun Materials 483
Rushikesh S. Ambekar and Balasubramanian Kandasubramanian
17.1 Introduction 484
17.2 Drug-Loaded Polymer Nanofibers 485
17.3 Drug-Loaded Biodegradable Polymer Nanofibers 485
17.4 Drug-Loaded Non-Biodegradable Polymer Nanofibers 501
17.5 Conclusion and Future Scope 507
References 508
Index 515
1 Electrospinning Fabrication Strategies: From Conventional to Advanced
Approaches 1
J.R. Dias, Alexandra I. F. Alves, Carolina A. Marzia-Ferreira and Nuno M.
Alves
1.1 Introduction 2
1.2 Conventional Fabrication Approaches 3
1.2.1 Randomly Oriented Fiber Meshes 3
1.2.2 Aligned Fiber Meshes 8
1.2.3 Fibers With Core/Shell Structure 14
1.3 Advanced Fabrication Approaches 19
1.3.1 Melt Electrospinning 19
1.3.2 Near Field Electrospinning 22
1.3.3 Electroblowing 23
1.3.4 Hybrid Structures 25
1.3.5 Cell Electrospinning 30
1.3.6 In Situ Electrospinning 33
1.4 Conclusions and Future Perspectives 36
Acknowledgments 37
References 37
2 History, Basics, and Parameters of Electrospinning Technique 53
Aysel Kantürk Figen
2.1 Definitions 53
2.2 Milestone of Electrospinning Technique 54
2.3 Setup and Configuration of Electrospinning Technique 56
2.4 Parameters 59
2.4.1 Polymer Solutions 59
2.4.2 Spin Parameters 62
2.4.3 Environmental Parameters 63
2.5 Concluding Remarks 64
References 65
3 Physical Characterization of Electrospun Fibers 71
Anushka Purabgola and Balasubramanian Kandasubramanian
3.1 Introduction 72
3.2 Characterization Techniques 76
3.2.1 Scanning Electron Microscopy (SEM) 76
3.2.2 Field Emission Scanning Electron Microscopy (FESEM) 77
3.2.3 Transmission Electron Microscopy (TEM) 79
3.2.4 High-Resolution TEM (HRTEM) 80
3.2.5 Atomic Force Microscopy (AFM) 81
3.2.6 X-Ray Diffraction (XRD) 83
3.2.7 Nanoindentation 84
3.2.8 Differential Scanning Calorimetry (DSC) 85
3.2.9 Thermalgravimetric Analysis (TGA) 85
3.3 Physical Characterization of Electrospun Fibers 87
3.3.1 Electrospun Polymer Nanofibers 87
3.3.1.1 Polyacrylonitrile (PAN) Nanofiber 87
3.3.1.2 Polyvinylidene Fluoride (PVDF) Fibrous Nanofibers 91
3.3.1.3 Polydodecylthiophene (PDT) Core-Polyethylene Oxide (PEO) Shell
Polymer Nanofiber 92
3.3.1.4 Polymethylmethacrylate (PMMA) Nanofiber 92
3.3.2 Electrospun Metal (Oxide) Nanofiber 94
3.3.2.1 Polyvinyl Alcohol (PVA)/Nickel Acetate 95
3.3.2.2 Polyvinyl Pyrrolidone (PVP)/TiO2 Nanofibers 96
3.3.2.3 Polyethylene Oxide/Polyvinylpyrrolidone-Iron Oxide Nanofiber 96
3.3.3 Electrospun Nanocomposite Nanofibers 97
3.3.3.1 TiO2/SiO2/C (TSC) Nanofibers 98
3.3.3.2 Polyvinylidene Fluoride (PVDF)/ZnO Nanocomposite Nanofiber 100
3.3.3.3 Polyvinyl Alcohol (PVA)/Cellulose Nanocrystals Composite Nanofibers
101
3.3.4 Electrospun Carbon Nanofibers (CNFs) 104
3.3.4.1 Polyacrylonitrile (PAN)/N-Doped CNFs 104
3.3.4.2 Lignan-Derived CNFs/PAN 104
3.3.4.3 Poly(L-Laticide-Co- -Caprolactone) (PLCL)/MWCNTs Nanofibers 105
3.4 Conclusion 108
References 109
4 Application of Electrospun Materials in Catalysis 113
Bilge Cökuner Filiz
4.1 Introduction 113
4.2 Type of Catalysts 115
4.2.1 Catalyst Supports 115
4.2.2 Template for Catalytic Nanotubes 116
4.2.3 Metal Oxide Catalysts 117
4.3 Catalytic Applications 117
4.3.1 Energy Field 118
4.3.1.1 Oxidation Reactions 118
4.3.1.2 Reduction Reactions 119
4.3.1.3 Hydrogen Generation Reactions 120
4.3.2 Environment Field 121
4.3.2.1 Oxidation Reactions 121
4.3.2.2 Reduction Reactions 122
4.3.2.3 Degradation Reactions 122
4.4 Conclusion 124
References 125
5 Application of Electrospun Materials in Packaging Industry 131
Samson Rwahwire, Catherine Namuga and Nibikora Ildephonse
5.1 Packaging Industry 131
5.2 Electrospinning 132
5.3 Nanofibers 135
5.4 Biopolymers 135
5.4.1 Nanoencapsulation 135
5.4.2 Methods of Encapsulation Application in Food Packaging 139
5.4.3 Drying 140
5.4.4 Nano-Enabled Packaging Solutions 140
5.4.5 Food Packaging 141
5.4.6 Active Food Packaging 142
5.5 Future Perspectives 144
References 145
6 Application of Electrospun Materials in Water Treatment 151
Shivani Rastogi and Balasubramanian Kandasubramanian
6.1 Introduction 152
6.2 Heavy Metal Ion Removal From Wastewater 154
6.2.1 Cellulose/Camphor Soot Nanofibers 157
6.2.2 Spider-Web Textured Electrospun Graphene Composite Fibers 158
6.2.3 Resorcinol-Formaldehyde Nanofibers 161
6.2.4 Ion-Imprinted Chitosan/1-Butyl-3-Methylimidazolium Tetrafluoroborate
Fibers 162
6.2.5 Molecular Imprinted Camphor Soot Functionalized PAN Nanofibers 164
6.2.6 Iron Functionalized Chitosan Electrospun NFs (ICS-ENF) 166
6.2.7 Cellulose/Organically Modified Montmorillonite 166
6.3 Dye Removal From Wastewater 167
6.3.1 Zein Nanofibers 167
6.3.2 ß-Cyclodextrin Based Nanofibers 169
6.3.3 3-Mercapto Propionic Acid Coated Fe3O4 NP Immobilized Amidoximated
Polyacrylonitrile 171
6.3.4 Functionalized Polyacrylonitrile Membrane 171
6.4 Oil-Water Separation 172
6.4.1 Wettable Cotton-Based Janus Bio Fabric (PLA/Functionalized
Organoclay) 172
6.4.2 Camphor Soot Immobilized Fluoroelastomer Membrane 174
6.4.3 Polycaprolactone/Beeswax Membrane 174
6.5 Microbe Elimination From Wastewater 176
6.5.1 ß-Cyclodextrin/Cellulose Acetate Embedded Ag and Ag/Fe Nanoparticles
176
6.5.2 Silver Coated Polyacrylonitrile (PAN) Membrane 177
6.6 Antibiotic Removal From Wastewater 178
6.7 Conclusion 180
References 180
7 Application of Electrospun Materials in Oil-Water Separations 185
T.C. Mokhena, M.J. John, M.J. Mochane and P.C. Tsipa
7.1 Introduction 185
7.2 Oil Spill Clean-Up 187
7.2.1 Hydrophobic-Oleophilic Polymer Nanofiber 187
7.2.2 Blends 191
7.2.3 Composites 194
7.3 Separation Membranes 195
7.4 Thin-Film Composite (TFC) Membranes 202
7.5 Three Dimensional (3D) Nanofibrous Membranes 203
7.6 Smart Membranes 204
7.7 Conclusions and Future Trends 208
Acknowledgments 209
References 209
8 Application of Electrospun Materials in Industrial Applications 215
Anisa Andleeb and Muhammad Yar
8.1 Introduction 216
8.2 Technology Transfer From Research Laboratories to Industries 218
8.3 Industrial Applications of Electrospun Materials 220
8.3.1 Biomedical Materials 221
8.3.2 Defense and Security 227
8.3.3 Textile Industry 227
8.3.4 Catalyst 228
8.3.5 Energy Harvest 229
8.3.6 Filtration 230
8.3.7 Sensor Applications 232
8.3.8 Food 234
8.4 Current and Future Developments 236
References 237
9 Antimicrobial Electrospun Materials 243
Samson Afewerki, Guillermo U. Ruiz-Esparza and Anderson O. Lobo
9.1 Introduction 244
9.1.1 Electrospinning Technology 244
9.1.2 Antimicrobial Materials 246
9.1.3 Antimicrobial Electrospun Materials 246
9.1.4 Conclusions and Future Directions 254
Acknowledgments 255
References 255
10 Application of Electrospun Materials in Gene Delivery 265
GSN Koteswara Rao, Mallesh Kurakula and Khushwant S. Yadav
10.1 Introduction 266
10.2 Gene Therapy 266
10.3 Cellular Uptake of Nonviral Gene Delivery 268
10.4 Vectors 269
10.4.1 Viral Vectors 269
10.4.2 Nonviral Vectors 270
10.4.3 Delivery of Genes through Vectors 271
10.5 Nanofibers/Scaffolds 273
10.6 Electrospinning 275
10.6.1 Steps Involved in the Electrospinning Process 276
10.6.2 Types of Electrospinning 279
10.7 Characterization 281
10.8 Applications of Electrospun Materials 282
10.8.1 Electrospun Materials in Gene Delivery 282
10.8.1.1 Tissue Engineering 282
10.8.1.2 Regenerative Medicine 284
10.8.1.3 Vascular Grafts 284
10.8.1.4 Bone Regeneration 285
10.8.1.5 Diabetic Ulcer Treatment 286
10.8.1.6 Cancer Treatment 287
10.8.1.7 Blood Vessel Regeneration 287
10.8.1.8 Wound Management 288
10.8.1.9 Carrier for Genetic Material Loaded Nanoparticles 288
10.8.1.10 Myocardial Infarction Treatment 288
10.8.1.11 Stem Cell-Based Therapy 289
10.8.1.12 Gene Silencing 289
10.8.1.13 Controlled Release of Gene 290
10.8.1.14 DNA Delivery 290
10.8.2 Electrospun Materials in Drug Delivery 291
10.8.2.1 Antibiotics and Various Antibacterial Agents 292
10.8.2.2 Anticancer Drugs 292
10.8.2.3 Cancer Diagnosis 292
10.8.2.4 Wound Management 293
10.8.2.5 Tissue Engineering 293
10.8.2.6 Bone Tissue Engineering 293
10.8.2.7 Dental Growth 294
10.8.2.8 Therapeutic Delivery Systems 294
10.8.3 Electrospun Materials in Miscellaneous Applications 294
10.9 Future Scope and Challenges 296
10.10 Conclusion 296
References 297
11 Application of Electrospun Materials in Bioinspired Systems 307
Anca Filimon, Adina Maria Dobos, Oana Dumbrava and Adriana Popa
11.1 Introduction 308
11.2 Composite Materials Based on Cellulosic Nanofibers 309
11.2.1 Processing of Cellulose-Based Materials 310
11.2.2 Structure-Property-Biological Activity Relationship 310
11.2.2.1 Biosensors Based on Cellulosic Fibers 310
11.2.2.2 Delivery Systems and Controlled Release of Drugs 312
11.2.2.3 Wound Dressing 316
11.2.2.4 Tissue Engineering 317
11.3 Chitosan Nanofibrous Scaffolds 322
11.3.1 Overview on Obtained Chitosan From Bio-Waste Source 322
11.3.2 Specific Applications of Chitosan Nanofibers in Bio Inspired Systems
325
11.3.2.1 Wound Dressing 325
11.3.2.2 Drug Delivery 329
11.3.2.3 Tissue Engineering 330
11.3.2.4 Antibacterial Activity 336
11.4 Conclusions 339
References 339
12 Smart Electrospun Materials 351
Gaurav Sharma, Shivani Rastogi and Balasubramanian Kandasubramanian
12.1 Introduction 352
12.2 Smart Electrospun Materials in Biomedical Applications 354
12.2.1 Tissue Engineering 354
12.2.2 Controlled Drug Delivery 355
12.2.3 Wound Healing 356
12.3 Smart Electrospun Materials for Environmental Remediation 357
12.3.1 Water Pollution Control 357
12.3.2 Air Pollution Control 359
12.3.3 Noise Pollution Control 360
12.4 Smart Electrospun Materials in Electronics 361
12.4.1 Solar Cell 361
12.4.2 Energy Harvesters 362
12.4.3 Shape-Memory Polymers 363
12.4.4 Batteries and Supercapacitors 364
12.4.5 Sensors, Transistors, and Diodes 366
12.5 Smart Electrospun Materials in Textiles 368
12.5.1 Biomedical Parameter Regulation 368
12.5.2 Protection from Environment Threat 369
12.5.3 Energy Harvesters in Textiles 370
12.5.4 Smart Textile Project 370
12.6 Smart Electrospun Materials in Food Packaging 371
12.7 Conclusion 372
References 373
13 Advances in Electrospinning Technique in the Manufacturing Process of
Nanofibrous Materials 379
Karine Cappuccio de Castro, Josiel Martins Costa and Lucia Helena
Innocentini Mei
13.1 Introduction 380
13.2 Process 380
13.3 Important Parameters 382
13.3.1 Effects of the Applied Tension 382
13.3.2 Effects of Solution Eject Rate 382
13.3.3 Effects of Needle-to-Collector Distance and Needle Diameter 384
13.3.4 Effects of Solution Concentration and Viscosity 384
13.3.5 Effects of Solution Conductivity 385
13.3.6 Solvent Effects 385
13.3.7 Effects of Surface Tension 385
13.3.8 Humidity and Temperature Effects 386
13.4 Recent Advances in the Technique 386
13.4.1 Electrospinning Coaxial 386
13.4.2 Electrospinning Triaxial 387
13.4.3 Multiple Needle Electrospinning 387
13.4.4 Electroblowing 387
13.4.5 Magnetic Electrospinning 388
13.4.6 Centrifugal Electrospinning 388
13.4.7 Needleless Electrospinning 388
13.5 Coaxial Electrospinning as an Excellent Process for Hollow Fiber and
Drug Delivery Device Production 389
13.6 Applications 390
13.7 Conclusions and Future Perspectives 393
References 393
14 Application of Electrospun Materials in Filtration and Sorbents 401
T.S. Motsoeneg, T.E. Mokoena, T.C. Mokhena and M.J. Mochane
14.1 Introduction 402
14.2 Morphology of Sorbents With Concomitant Sorption Capacity 403
14.3 Mechanistic Overview in Purification During Filtration 406
14.4 Conclusion and Future Prospects 410
References 411
15 Application of Electrospun Materials in Batteries 415
Subhash B. Kondawar and Monali V. Bhute
15.1 Introduction 416
15.2 Electrospun Nanofibers as Anodes 418
15.2.1 Carbon Nanofibers as Anode 418
15.2.2 Metal Oxide Nanofibers as Anode 419
15.3 Electrospun Nanofibers as Cathode 423
15.3.1 Lithium Metal Oxide Nanofibers as Cathode 423
15.3.2 Transition Metal Oxides Nanofibers as Cathode 424
15.4 Electrospun Nanofibers as Separator 425
15.4.1 Polymer Nanofibers as Separator 426
15.4.2 Polymer-Inorganic Nanofiber Separators 430
15.5 Conclusions and Outlook 432
References 433
16 State-of-the-Art and Future Electrospun Technology 441
Prasansha Rastogi and Balasubramanian Kandasubramanian
16.1 Introduction 442
16.2 Some General Smart Applications of Electrospun Membranes 445
16.3 Stimuli Responsive or Shape Memory Electrospun Membranes 454
16.4 Conclusion 473
Acknowledgment 474
References 474
17 Antimicrobial Electrospun Materials 483
Rushikesh S. Ambekar and Balasubramanian Kandasubramanian
17.1 Introduction 484
17.2 Drug-Loaded Polymer Nanofibers 485
17.3 Drug-Loaded Biodegradable Polymer Nanofibers 485
17.4 Drug-Loaded Non-Biodegradable Polymer Nanofibers 501
17.5 Conclusion and Future Scope 507
References 508
Index 515