Karl Bosch
Elementare Einführung in die Wahrscheinlichkeitsrechnung (eBook, PDF)
Mit 82 Beispielen und 73 Übungsaufgaben mit vollständigem Lösungsweg
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
Als Download kaufen
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Jetzt verschenken
Alle Infos zum eBook verschenken
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
Karl Bosch
Elementare Einführung in die Wahrscheinlichkeitsrechnung (eBook, PDF)
Mit 82 Beispielen und 73 Übungsaufgaben mit vollständigem Lösungsweg
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 10.66MB
Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 194
- Erscheinungstermin: 8. März 2013
- Deutsch
- ISBN-13: 9783322855558
- Artikelnr.: 53391866
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Prof. Dr. Karl Bosch war bis 2005 Professor an der Universität Hohenheim im Fachgebiet Angewandte Mathematik und Statistik. Seine Forschungsschwerpunkte liegen in den Bereichen Wartungs-, Reparatur- und Inspektionsprozesse sowie im Themenkreis Glücksspiele. Er ist Mitglied der Forschungsgruppe Glücksspiel an der Universität Hohenheim und beschäftig sich mit den Chancen und Risiken von Glücksspielen, insbesondere beim Lotto.
1. Der Wahrscheinlichkeitsbegriff.- 1.1. Zufällige Ereignisse.- 1.2. Die relative Häufigkeit.- 1.3. Axiomatische Definition der Wahrscheinlichkeit nach Kolmogoroff.- 1.4. Der Begriff der Wahrscheinlichkeit nach Laplace und kombinatorische Methoden zur Berechnung von Wahrscheinlichkeiten.- 1.5. Geometrische Wahrscheinlichkeiten.- 1.6. Bedingte Wahrscheinlichkeiten und unabhängige Ereignisse.- 1.7. Bernoulli-Experimente und klassische Wahrscheinlichkeitsverteilungen.- 1.8. Der Satz von der vollständigen Wahrscheinlichkeit und die Bayessche Formel.- 1.9. Das Bernoullische Gesetz der großen Zahlen.- 1.10. Übungsaufgaben.- 2. Zufallsvariable.- 2.1. Definition einer Zufallsvariablen.- 2.2. Diskrete Zufallsvariable.- 2.3. Spezielle diskrete Verteilungen.- 2.4. Stetige Zufallsvariable.- 2.5. Spezielle stetige Verteilungen.- 2.6. Allgemeine Zufallsvariable.- 3. Gesetze der großen Zahlen.- 3.1. Die Tschebyscheffsehe Ungleichung.- 3.2. Das schwache Gesetz der großen Zahlen.- 3.3. Der zentrale Grenzwertsatz.- 3.4. Übungsaufgaben.- 4. Testverteilungen.- 4.1. Die Chi-Quadrat-Verteilung.- 4.2. Die Studentsche t-Verteilung.- 4.3. Die F-Verteilung von Fisher.- 5. Ausblick.- 6. Anhang.- 6.1. Lösungen der Übungsaufgaben.- 6.2. Tafel der Verteilungsfunktion Oder N(0;l)-Verteilung.- 6.3. Weiterführende Literatur.- 6.4. Namens- und Sachregister.
Der Wahrscheinlichkeitsbegriff
Zufallsvariable
Gesetze der großen Zahlen
Testverteilungen
Ausblick
Zufallsvariable
Gesetze der großen Zahlen
Testverteilungen
Ausblick
1. Der Wahrscheinlichkeitsbegriff.- 1.1. Zufällige Ereignisse.- 1.2. Die relative Häufigkeit.- 1.3. Axiomatische Definition der Wahrscheinlichkeit nach Kolmogoroff.- 1.4. Der Begriff der Wahrscheinlichkeit nach Laplace und kombinatorische Methoden zur Berechnung von Wahrscheinlichkeiten.- 1.5. Geometrische Wahrscheinlichkeiten.- 1.6. Bedingte Wahrscheinlichkeiten und unabhängige Ereignisse.- 1.7. Bernoulli-Experimente und klassische Wahrscheinlichkeitsverteilungen.- 1.8. Der Satz von der vollständigen Wahrscheinlichkeit und die Bayessche Formel.- 1.9. Das Bernoullische Gesetz der großen Zahlen.- 1.10. Übungsaufgaben.- 2. Zufallsvariable.- 2.1. Definition einer Zufallsvariablen.- 2.2. Diskrete Zufallsvariable.- 2.3. Spezielle diskrete Verteilungen.- 2.4. Stetige Zufallsvariable.- 2.5. Spezielle stetige Verteilungen.- 2.6. Allgemeine Zufallsvariable.- 3. Gesetze der großen Zahlen.- 3.1. Die Tschebyscheffsehe Ungleichung.- 3.2. Das schwache Gesetz der großen Zahlen.- 3.3. Der zentrale Grenzwertsatz.- 3.4. Übungsaufgaben.- 4. Testverteilungen.- 4.1. Die Chi-Quadrat-Verteilung.- 4.2. Die Studentsche t-Verteilung.- 4.3. Die F-Verteilung von Fisher.- 5. Ausblick.- 6. Anhang.- 6.1. Lösungen der Übungsaufgaben.- 6.2. Tafel der Verteilungsfunktion Oder N(0;l)-Verteilung.- 6.3. Weiterführende Literatur.- 6.4. Namens- und Sachregister.
Der Wahrscheinlichkeitsbegriff
Zufallsvariable
Gesetze der großen Zahlen
Testverteilungen
Ausblick
Zufallsvariable
Gesetze der großen Zahlen
Testverteilungen
Ausblick