151,95 €
151,95 €
inkl. MwSt.
Sofort per Download lieferbar
76 °P sammeln
151,95 €
Als Download kaufen
151,95 €
inkl. MwSt.
Sofort per Download lieferbar
76 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
151,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
76 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This comprehensive textbook covers both classical and geometric aspects of optimization using methods, deterministic and stochastic in a single volume. It will help serve as ideal study material for senior undergraduate and graduate students in the fields of civil, mechanical, electrical, electronics and communication engineering.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 22.48MB
Andere Kunden interessierten sich auch für
- Debasish RoyElements of Classical and Geometric Optimization (eBook, PDF)151,95 €
- Robert S. GullcoElements of Rock Physics and Their Application to Inversion and AVO Studies (eBook, ePUB)52,95 €
- Electric Power Transformer Engineering (eBook, ePUB)52,95 €
- Arthur David SniderRandom Processes for Engineers (eBook, ePUB)56,95 €
- The Control Handbook (eBook, ePUB)224,95 €
- Karan S. SuranaClassical Continuum Mechanics (eBook, ePUB)125,95 €
- Trevor DraycottStructural Elements Design Manual: Working with Eurocodes (eBook, ePUB)56,95 €
-
-
-
This comprehensive textbook covers both classical and geometric aspects of optimization using methods, deterministic and stochastic in a single volume. It will help serve as ideal study material for senior undergraduate and graduate students in the fields of civil, mechanical, electrical, electronics and communication engineering.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 524
- Erscheinungstermin: 25. Januar 2024
- Englisch
- ISBN-13: 9781000914450
- Artikelnr.: 69690577
- Verlag: Taylor & Francis
- Seitenzahl: 524
- Erscheinungstermin: 25. Januar 2024
- Englisch
- ISBN-13: 9781000914450
- Artikelnr.: 69690577
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Debasish Roy, Professor, Department of Civil Engineering, Indian Institute of Science, Bangalore. He obtained his Ph.D. from the Indian Institute of Science, followed by post-doctoral research at the University of Innsbruck, Austria. He has published over 140 research papers in journals of national and international repute. His current research areas include geometrically inspired and gauge theories for continuum mechanics of solids, non-equilibrium thermodynamics of solids and fluctuation relations valid far from equilibrium, defect engineering and metamaterials with acoustic band gaps and optimization based on stochastic search on Riemannian manifolds.
G. Visweswara Rao is currently working as an engineering consultant in Bangalore, India. He received his Ph.D. from the Indian Institute of Science, Bangalore, in 1989. He has published several research papers in the areas of structural dynamics specific to earthquake engineering, nonlinear and random vibration, and structural control. His areas of research include non-linear and stochastic structural dynamics.
G. Visweswara Rao is currently working as an engineering consultant in Bangalore, India. He received his Ph.D. from the Indian Institute of Science, Bangalore, in 1989. He has published several research papers in the areas of structural dynamics specific to earthquake engineering, nonlinear and random vibration, and structural control. His areas of research include non-linear and stochastic structural dynamics.
Contents
Chapter 1 Optimization methods - A preview
1.1 Introduction
1.2 The continuous case - mathematical formulation
1.3 The discrete case - The travelling salesman problem
1.4 Basics of probability theory and random number generation
1.5 The brachistochrone problem
1.6 More on functional optimization: Hamilton's principle
1.7 Constrained optimization problems and optimality conditions
1.8. Functional optimization and optimal control
Concluding Remarks
Exercises
Notations
References
Chapter 2 Classical derivative-based methods of optimization
2.1 Introduction
2.2 Basic gradient methods
2.3 Quasi-Newton methods
2.4 Penalty function methods
2.5 Linear programming (LP)
2.6. Method of generalized reduced gradients
2.7 Method of feasible directions
2.8 Method of gradient projection
Concluding remarks
Exercises
Notations
References
Chapter 3 - Classical derivative-free methods of optimization
3.1 Introduction
3.2 Direct search methods
3.3 Other direct search methods
3.4 Metaheuristics - Evolutionary methods
Concluding remarks
Exercises
Notations
References
Chapter 4 Elements of Riemannian Differential Geometry and geometric
methods of optimization
4.1 Introduction
4.2 Tangent vectors and tangent space on manifolds
4.3 Riemannian (geometric) version of some classical gradient methods
4.4. Statistical estimation by geometrical method of optimization
4.5. Stochastic processes, stochastic calculus and solution of SDEs
4.6. Analogy between statistical sampling and stochastic optimization
4.7. Geometric method of optimization by Riemannian Langevin dynamics
Concluding remarks
Exercises
Notations
References
Chapter 5 Stochastic analysis on a manifold and more on geometric
optimization methods
5.1. Introduction
5.2 Stochastic development on a manifold
5.3. Non-convex function optimization based on stochastic development
5.4. Parameter estimation by GALA
Concluding remarks
Notations
References
Chapter 1 Optimization methods - A preview
1.1 Introduction
1.2 The continuous case - mathematical formulation
1.3 The discrete case - The travelling salesman problem
1.4 Basics of probability theory and random number generation
1.5 The brachistochrone problem
1.6 More on functional optimization: Hamilton's principle
1.7 Constrained optimization problems and optimality conditions
1.8. Functional optimization and optimal control
Concluding Remarks
Exercises
Notations
References
Chapter 2 Classical derivative-based methods of optimization
2.1 Introduction
2.2 Basic gradient methods
2.3 Quasi-Newton methods
2.4 Penalty function methods
2.5 Linear programming (LP)
2.6. Method of generalized reduced gradients
2.7 Method of feasible directions
2.8 Method of gradient projection
Concluding remarks
Exercises
Notations
References
Chapter 3 - Classical derivative-free methods of optimization
3.1 Introduction
3.2 Direct search methods
3.3 Other direct search methods
3.4 Metaheuristics - Evolutionary methods
Concluding remarks
Exercises
Notations
References
Chapter 4 Elements of Riemannian Differential Geometry and geometric
methods of optimization
4.1 Introduction
4.2 Tangent vectors and tangent space on manifolds
4.3 Riemannian (geometric) version of some classical gradient methods
4.4. Statistical estimation by geometrical method of optimization
4.5. Stochastic processes, stochastic calculus and solution of SDEs
4.6. Analogy between statistical sampling and stochastic optimization
4.7. Geometric method of optimization by Riemannian Langevin dynamics
Concluding remarks
Exercises
Notations
References
Chapter 5 Stochastic analysis on a manifold and more on geometric
optimization methods
5.1. Introduction
5.2 Stochastic development on a manifold
5.3. Non-convex function optimization based on stochastic development
5.4. Parameter estimation by GALA
Concluding remarks
Notations
References
Contents
Chapter 1 Optimization methods - A preview
1.1 Introduction
1.2 The continuous case - mathematical formulation
1.3 The discrete case - The travelling salesman problem
1.4 Basics of probability theory and random number generation
1.5 The brachistochrone problem
1.6 More on functional optimization: Hamilton's principle
1.7 Constrained optimization problems and optimality conditions
1.8. Functional optimization and optimal control
Concluding Remarks
Exercises
Notations
References
Chapter 2 Classical derivative-based methods of optimization
2.1 Introduction
2.2 Basic gradient methods
2.3 Quasi-Newton methods
2.4 Penalty function methods
2.5 Linear programming (LP)
2.6. Method of generalized reduced gradients
2.7 Method of feasible directions
2.8 Method of gradient projection
Concluding remarks
Exercises
Notations
References
Chapter 3 - Classical derivative-free methods of optimization
3.1 Introduction
3.2 Direct search methods
3.3 Other direct search methods
3.4 Metaheuristics - Evolutionary methods
Concluding remarks
Exercises
Notations
References
Chapter 4 Elements of Riemannian Differential Geometry and geometric
methods of optimization
4.1 Introduction
4.2 Tangent vectors and tangent space on manifolds
4.3 Riemannian (geometric) version of some classical gradient methods
4.4. Statistical estimation by geometrical method of optimization
4.5. Stochastic processes, stochastic calculus and solution of SDEs
4.6. Analogy between statistical sampling and stochastic optimization
4.7. Geometric method of optimization by Riemannian Langevin dynamics
Concluding remarks
Exercises
Notations
References
Chapter 5 Stochastic analysis on a manifold and more on geometric
optimization methods
5.1. Introduction
5.2 Stochastic development on a manifold
5.3. Non-convex function optimization based on stochastic development
5.4. Parameter estimation by GALA
Concluding remarks
Notations
References
Chapter 1 Optimization methods - A preview
1.1 Introduction
1.2 The continuous case - mathematical formulation
1.3 The discrete case - The travelling salesman problem
1.4 Basics of probability theory and random number generation
1.5 The brachistochrone problem
1.6 More on functional optimization: Hamilton's principle
1.7 Constrained optimization problems and optimality conditions
1.8. Functional optimization and optimal control
Concluding Remarks
Exercises
Notations
References
Chapter 2 Classical derivative-based methods of optimization
2.1 Introduction
2.2 Basic gradient methods
2.3 Quasi-Newton methods
2.4 Penalty function methods
2.5 Linear programming (LP)
2.6. Method of generalized reduced gradients
2.7 Method of feasible directions
2.8 Method of gradient projection
Concluding remarks
Exercises
Notations
References
Chapter 3 - Classical derivative-free methods of optimization
3.1 Introduction
3.2 Direct search methods
3.3 Other direct search methods
3.4 Metaheuristics - Evolutionary methods
Concluding remarks
Exercises
Notations
References
Chapter 4 Elements of Riemannian Differential Geometry and geometric
methods of optimization
4.1 Introduction
4.2 Tangent vectors and tangent space on manifolds
4.3 Riemannian (geometric) version of some classical gradient methods
4.4. Statistical estimation by geometrical method of optimization
4.5. Stochastic processes, stochastic calculus and solution of SDEs
4.6. Analogy between statistical sampling and stochastic optimization
4.7. Geometric method of optimization by Riemannian Langevin dynamics
Concluding remarks
Exercises
Notations
References
Chapter 5 Stochastic analysis on a manifold and more on geometric
optimization methods
5.1. Introduction
5.2 Stochastic development on a manifold
5.3. Non-convex function optimization based on stochastic development
5.4. Parameter estimation by GALA
Concluding remarks
Notations
References