36,00 €
36,00 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
36,00 €
36,00 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
36,00 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
36,00 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

The global demand for increased computational power is fuelled by the miniaturisation of electronic components. Next to this more Moore approach, more than Moore and beyond CMOS expand on existing technologies and on devices with fundamentally different principles of operation. Mott based devices are introduced under the scope of beyond CMOS, with a potentially reduced energy consumption during operation in comparison to semiconductor-based devices. In such devices quantum properties are utilised to control the current flow. Mott insulators are especially intriguing as they fulfil all…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 25.53MB
  • FamilySharing(5)
Produktbeschreibung
The global demand for increased computational power is fuelled by the miniaturisation of electronic components. Next to this more Moore approach, more than Moore and beyond CMOS expand on existing technologies and on devices with fundamentally different principles of operation. Mott based devices are introduced under the scope of beyond CMOS, with a potentially reduced energy consumption during operation in comparison to semiconductor-based devices. In such devices quantum properties are utilised to control the current flow. Mott insulators are especially intriguing as they fulfil all conditions to be metallic but show properties of insulating materials. Up to now the properties in Mott-insulators have typically been controlled at the macroscopic length scale, which leaves room for miniaturisation. It is apparent that such a versatile material class has untapped potential with regards to utilisation of its quantum properties. This work investigates a novel class of materials, beyond CMOS, the lacunar spinels, where the electrons are localised on molecular clusters instead of atomic sites. The target system of this thesis, GaV4S8, is such a lacunar spinel and shows a structural transition, which gives rise to ferroelectric domain walls that could be used as nanoscale functional objects. Here, potential 2D conducting pathways are investigated to push Mott science to the nanoscale. These pseudo 2D properties are characterised using a range of surface sensitive techniques to understand their origin, a critical first step for functionalisation. Transferring the knowledge gained on these structures allowed for an in-situ control of the current flow at the nanoscale, pushing the boundaries of research in this quantum material.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.