53,95 €
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
27 °P sammeln
53,95 €
53,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
27 °P sammeln
Als Download kaufen
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
27 °P sammeln
Jetzt verschenken
53,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
27 °P sammeln
  • Format: ePub

Emergy presents the fundamentals of emergy, proposing the definition and representation of emergy diagrams and 'spreading.' Embodied energy is the energy consumed by all of the processes associated with the production of a building, from the mining and processing of natural resources to manufacturing, transport and product delivery. The authors evaluate a range of sources and the methodologies surrounding emergy analysis. Filled with real-world applied examples including wood energy, wind resources, ore and recycling, this book shows you how to adopt an approach similar to the Lagrangian…mehr

Produktbeschreibung
Emergy presents the fundamentals of emergy, proposing the definition and representation of emergy diagrams and 'spreading.' Embodied energy is the energy consumed by all of the processes associated with the production of a building, from the mining and processing of natural resources to manufacturing, transport and product delivery. The authors evaluate a range of sources and the methodologies surrounding emergy analysis. Filled with real-world applied examples including wood energy, wind resources, ore and recycling, this book shows you how to adopt an approach similar to the Lagrangian approach to fluid mechanics, and establish that the intuitive notion of temporal independence of the emergy specific to materials requires nuances.

  • Presents the fundamentals of emergy, its original definition, and methodology
  • Evaluates a range of different sources such as wood energy, wind, recycling, and ore
  • Provides real-world application examples in connection with the climate energy plan of H2020 by the European Union
  • Introduces enhanced emergy concepts

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Olivier Le Corre received his degree in Engineering, specializing in Thermal-Energy (1992), from the Polytechnic University of Nantes. He received his PhD in Energy, from Mines School of Paris, in 1995. He undertook his habilitation research at the Graduate School of Mechanical, Thermal, Civil Engineering, University of Nantes (2003). He is currently assigned to the Ecole des Mines de Nantes, and member of the Joint Research Unit GEPEA No. 6144.