Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Weak approximations of the empirical process when parameters are estimated.- On the Erdös-Rényi increments and the P. Lévy modulus of continuity of a kiefer process.- Kolmogorov-smirnov tests when parameters are estimated.- On uniform convergence of measures with applications to uniform convergence of empirical distributions.- An alternative approach to glivenko-cantelli theorems.- Weak convergence under contiguous alternatives of the empirical process when parameters are estimated: The Dk approach.- Almost sure invariance principles for empirical distribution functions of weakly dependent random variables.- Three theorems of multivariate empirical process.- Weak convergence to stable laws by means of a weak invariance principle.- A necessary condition for the convergence of the isotrope discrepancy.- Two examples concerning uniform convergence of measures w.r.t. balls in Banach spaces.
Weak approximations of the empirical process when parameters are estimated.- On the Erdös-Rényi increments and the P. Lévy modulus of continuity of a kiefer process.- Kolmogorov-smirnov tests when parameters are estimated.- On uniform convergence of measures with applications to uniform convergence of empirical distributions.- An alternative approach to glivenko-cantelli theorems.- Weak convergence under contiguous alternatives of the empirical process when parameters are estimated: The Dk approach.- Almost sure invariance principles for empirical distribution functions of weakly dependent random variables.- Three theorems of multivariate empirical process.- Weak convergence to stable laws by means of a weak invariance principle.- A necessary condition for the convergence of the isotrope discrepancy.- Two examples concerning uniform convergence of measures w.r.t. balls in Banach spaces.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826