Energy-Efficient Computing and Data Centers (eBook, PDF)
Alle Infos zum eBook verschenken
Energy-Efficient Computing and Data Centers (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Data centers consume roughly 1% of the total electricity demand, while ICT as a whole consumes around 10%. Demand is growing exponentially and, left unchecked, will grow to an estimated increase of 20% or more by 2030. This book covers the energy consumption and minimization of the different data center components when running real workloads, taking into account the types of instructions executed by the servers. It presents the different air- and liquid-cooled technologies for servers and data centers with some real examples, including waste heat reuse through adsorption chillers, as well as…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 17.21MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 240
- Erscheinungstermin: 6. August 2019
- Englisch
- ISBN-13: 9781119648802
- Artikelnr.: 57496896
- Verlag: John Wiley & Sons
- Seitenzahl: 240
- Erscheinungstermin: 6. August 2019
- Englisch
- ISBN-13: 9781119648802
- Artikelnr.: 57496896
Chapter 1. Systems in Data Centers 1
1.1. Servers 1
1.2. Storage arrays 3
1.3. Data center networking 4
1.4. Components 5
1.4.1. Central processing unit 5
1.4.2. Graphics processing unit 7
1.4.3. Volatile memory 8
1.4.4. Non-volatile memory 10
1.4.5. Non-volatile storage 10
1.4.6. Spinning disks and tape storage 13
1.4.7. Motherboard 15
1.4.8. PCIe I/O cards 16
1.4.9. Power supplies 17
1.4.10. Fans 18
Chapter 2. Cooling Servers 19
2.1. Evolution of cooling for mainframe, midrange and distributed computers
from the 1960s to 1990s 19
2.2. Emergence of cooling for scale out computers from 1990s to 2010s 20
2.3. Chassis and rack cooling methods 23
2.4. Metrics considered for cooling 27
2.4.1. Efficiency 27
2.4.2. Reliability cost 28
2.4.3. Thermal performance 29
2.5. Material used for cooling 31
2.6. System layout and cooling air flow optimization 32
Chapter 3. Cooling the Data Center 37
3.1. System cooling technologies used 37
3.2. Air-cooled data center 38
3.2.1. Conventional air-cooled data center 38
3.3. ASHRAE data center cooling standards 40
3.3.1. Operation and temperature classes 40
3.3.2. Liquid cooling classes 41
3.3.3. Server and rack power trend 42
3.4. Liquid-cooled racks 43
3.5. Liquid-cooled servers 46
3.5.1. Water heat capacity 46
3.5.2. Thermal conduction module 47
3.5.3. Full node heat removal with cold plates 48
3.5.4. Modular heat removal with cold plates 50
3.5.5. Immersion cooling 50
3.5.6. Recent DWC servers 51
3.6. Free cooling 54
3.7. Waste heat reuse 54
3.7.1. Reusing heat as heat 54
3.7.2. Transforming heat with adsorption chillers 55
Chapter 4. Power Consumption of Servers and Workloads 65
4.1. Trends in power consumption for processors 65
4.1.1. Moore's and Dennard's laws 68
4.1.2. Floating point instructions on Xeon processors 72
4.1.3. CPU frequency of instructions on Intel Xeon processors 73
4.2. Trends in power consumption for GPUs 74
4.2.1. Moore's and Dennard's laws 77
4.3. ACPI states 78
4.4. The power equation 83
Chapter 5. Power and Performance of Workloads 87
5.1. Power and performance of workloads 87
5.1.1. SKU power and performance variations 87
5.1.2. System parameters 89
5.1.3. Workloads used 92
5.1.4. CPU-bound and memory-bound workloads 92
5.1.5. DC node power versus components power 93
5.2. Power, thermal and performance on air-cooled servers with Intel Xeon
94
5.2.1. Frequency, power and performance of simple SIMD instructions 95
5.2.2. Power, thermal and performance behavior of HPL 98
5.2.3. Power, thermal and performance behavior of STREAM 103
5.2.4. Power, thermal and performance behavior of real workloads 107
5.2.5. Power, thermal and frequency differences between CPUs 115
5.3. Power, thermal and performance on water-cooled servers with Intel Xeon
124
5.3.1. Impact on CPU temperature 124
5.3.2. Impact on voltage and frequency 125
5.3.3. Impact on power consumption and performance 127
5.4. Conclusions on the impact of cooling on power and performance 131
Chapter 6. Monitoring and Controlling Power and Performance of Servers and
Data Centers 133
6.1. Monitoring power and performance of servers 133
6.1.1. Sensors and APIs for power and thermal monitoring on servers 134
6.1.2. Monitoring performance on servers 140
6.2. Modeling power and performance of servers 142
6.2.1. Cycle-accurate performance models 142
6.2.2. Descriptive models 142
6.2.3. Predictive models 144
6.3. Software to optimize power and energy of servers 149
6.3.1. LoadLeveler job scheduler with energy aware feature 150
6.3.2. Energy Aware Runtime (EAR) 151
6.3.3. Other run time systems to manage power 153
6.4. Monitoring, controlling and optimizing the data center 154
6.4.1. Monitoring the data center 154
6.4.2. Integration of the data center infrastructure with the IT devices
156
Chapter 7. PUE, ERE and TCO of Various Cooling Solutions 159
7.1. Power usage effectiveness, energy reuse effectiveness and total cost
of ownership 159
7.1.1. Power usage effectiveness and energy reuse effectiveness 159
7.1.2. PUE and free cooling 162
7.1.3. ERE and waste heat reuse 163
7.2. Examples of data centers PUE and EREs 164
7.2.1. NREL Research Support Facility, CO 164
7.2.2. Leibnitz Supercomputing data center in Germany 166
7.3. Impact of cooling on TCO with no waste heat reuse 173
7.3.1. Impact of electricity price on TCO 177
7.3.2. Impact of node power on TCO 178
7.3.3. Impact of free cooling on TCO 181
7.4. Emerging technologies and their impact on TCO 183
7.4.1. Waste heat reuse 184
7.4.2. Renewable electricity generation 189
7.4.3. Storing excess energy for later reuse 192
7.4.4. Toward a net-zero energy data center 193
Conclusion 195
References 199
Index 209
Chapter 1. Systems in Data Centers 1
1.1. Servers 1
1.2. Storage arrays 3
1.3. Data center networking 4
1.4. Components 5
1.4.1. Central processing unit 5
1.4.2. Graphics processing unit 7
1.4.3. Volatile memory 8
1.4.4. Non-volatile memory 10
1.4.5. Non-volatile storage 10
1.4.6. Spinning disks and tape storage 13
1.4.7. Motherboard 15
1.4.8. PCIe I/O cards 16
1.4.9. Power supplies 17
1.4.10. Fans 18
Chapter 2. Cooling Servers 19
2.1. Evolution of cooling for mainframe, midrange and distributed computers
from the 1960s to 1990s 19
2.2. Emergence of cooling for scale out computers from 1990s to 2010s 20
2.3. Chassis and rack cooling methods 23
2.4. Metrics considered for cooling 27
2.4.1. Efficiency 27
2.4.2. Reliability cost 28
2.4.3. Thermal performance 29
2.5. Material used for cooling 31
2.6. System layout and cooling air flow optimization 32
Chapter 3. Cooling the Data Center 37
3.1. System cooling technologies used 37
3.2. Air-cooled data center 38
3.2.1. Conventional air-cooled data center 38
3.3. ASHRAE data center cooling standards 40
3.3.1. Operation and temperature classes 40
3.3.2. Liquid cooling classes 41
3.3.3. Server and rack power trend 42
3.4. Liquid-cooled racks 43
3.5. Liquid-cooled servers 46
3.5.1. Water heat capacity 46
3.5.2. Thermal conduction module 47
3.5.3. Full node heat removal with cold plates 48
3.5.4. Modular heat removal with cold plates 50
3.5.5. Immersion cooling 50
3.5.6. Recent DWC servers 51
3.6. Free cooling 54
3.7. Waste heat reuse 54
3.7.1. Reusing heat as heat 54
3.7.2. Transforming heat with adsorption chillers 55
Chapter 4. Power Consumption of Servers and Workloads 65
4.1. Trends in power consumption for processors 65
4.1.1. Moore's and Dennard's laws 68
4.1.2. Floating point instructions on Xeon processors 72
4.1.3. CPU frequency of instructions on Intel Xeon processors 73
4.2. Trends in power consumption for GPUs 74
4.2.1. Moore's and Dennard's laws 77
4.3. ACPI states 78
4.4. The power equation 83
Chapter 5. Power and Performance of Workloads 87
5.1. Power and performance of workloads 87
5.1.1. SKU power and performance variations 87
5.1.2. System parameters 89
5.1.3. Workloads used 92
5.1.4. CPU-bound and memory-bound workloads 92
5.1.5. DC node power versus components power 93
5.2. Power, thermal and performance on air-cooled servers with Intel Xeon
94
5.2.1. Frequency, power and performance of simple SIMD instructions 95
5.2.2. Power, thermal and performance behavior of HPL 98
5.2.3. Power, thermal and performance behavior of STREAM 103
5.2.4. Power, thermal and performance behavior of real workloads 107
5.2.5. Power, thermal and frequency differences between CPUs 115
5.3. Power, thermal and performance on water-cooled servers with Intel Xeon
124
5.3.1. Impact on CPU temperature 124
5.3.2. Impact on voltage and frequency 125
5.3.3. Impact on power consumption and performance 127
5.4. Conclusions on the impact of cooling on power and performance 131
Chapter 6. Monitoring and Controlling Power and Performance of Servers and
Data Centers 133
6.1. Monitoring power and performance of servers 133
6.1.1. Sensors and APIs for power and thermal monitoring on servers 134
6.1.2. Monitoring performance on servers 140
6.2. Modeling power and performance of servers 142
6.2.1. Cycle-accurate performance models 142
6.2.2. Descriptive models 142
6.2.3. Predictive models 144
6.3. Software to optimize power and energy of servers 149
6.3.1. LoadLeveler job scheduler with energy aware feature 150
6.3.2. Energy Aware Runtime (EAR) 151
6.3.3. Other run time systems to manage power 153
6.4. Monitoring, controlling and optimizing the data center 154
6.4.1. Monitoring the data center 154
6.4.2. Integration of the data center infrastructure with the IT devices
156
Chapter 7. PUE, ERE and TCO of Various Cooling Solutions 159
7.1. Power usage effectiveness, energy reuse effectiveness and total cost
of ownership 159
7.1.1. Power usage effectiveness and energy reuse effectiveness 159
7.1.2. PUE and free cooling 162
7.1.3. ERE and waste heat reuse 163
7.2. Examples of data centers PUE and EREs 164
7.2.1. NREL Research Support Facility, CO 164
7.2.2. Leibnitz Supercomputing data center in Germany 166
7.3. Impact of cooling on TCO with no waste heat reuse 173
7.3.1. Impact of electricity price on TCO 177
7.3.2. Impact of node power on TCO 178
7.3.3. Impact of free cooling on TCO 181
7.4. Emerging technologies and their impact on TCO 183
7.4.1. Waste heat reuse 184
7.4.2. Renewable electricity generation 189
7.4.3. Storing excess energy for later reuse 192
7.4.4. Toward a net-zero energy data center 193
Conclusion 195
References 199
Index 209