Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This new revision of an instant classic presents practical solutions to the problem of energy storage on a massive scale. This problem is especially difficult for renewable energy technologies, such as wind and solar power, that, currently, can only be utilized while the wind is blowing or while the sun is shining. If energy storage on a large scale were possible, this would solve many of our society's problems. For example, power grids would not go down during peak usage. Power plants that run on natural gas, for example, would no longer burn natural gas during the off-hours, as what happens…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 4.45MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 366
- Erscheinungstermin: 30. September 2019
- Englisch
- ISBN-13: 9781119083962
- Artikelnr.: 58045285
- Verlag: John Wiley & Sons
- Seitenzahl: 366
- Erscheinungstermin: 30. September 2019
- Englisch
- ISBN-13: 9781119083962
- Artikelnr.: 58045285
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
54 3.3.1 Redox Full-Flow Electrolyte Systems 54 3.3.2 Full Flow and Static Electrolyte System Comparisons 55 4 Practical Purposes of Energy Storage 59 4.1 The Need for Storage 59 4.2 The Need for Secondary Energy Systems 62 4.2.1 Comparisons and Background Information 63 4.3 Sizing Power Requirements of Familiar Activities 64 4.3.1 Examples of Directly Available Human Manual Power Mechanically Unaided 66 4.3.1.1 Arm Throwing 66 4.3.1.2 Vehicle Propulsion by Human Powered Leg Muscles 66 4.3.1.3 Mechanical Storage: Archer's Bow and Arrow 67 4.4 On-the-Road Vehicles 69 4.4.1 Land Vehicle Propulsion Requirements Summary 69 4.5 Rocket Propulsion Energy Needs Comparison 70 5 Competing Storage Methods 71 5.1 Problems with Batteries 72 5.2 Hydrocarbon Fuel: Energy Density Data 75 5.3 Electrochemical Cells 77 5.4 Metal-Halogen and Half-Redox Couples 78 5.5 Full Redox Couples 83 5.6 Possible Applications 85 6 The Concentration Cell 89 6.1 Colligative Properties of Matter 89 6.2 Electrochemical Application of Colligative Properties 91 6.2.1 Compressed Gas 93 6.2.2 Osmosis 94 6.2.3 Electrostatic Capacitor 95 6.2.4 Concentration Cells: CIR (Common Ion Redox) 96 6.3 Further Discussions on Fundamental Issues 101 6.4 Adsorption and Diffusion Rate Balance 107 6.5 Storage by Adsorption and Solids Precipitation 109 6.6 Some Interesting Aspects of Concentration Cells 113 6.7 Concentration Cell Storage Mechanisms that Employ Sulfur 116 6.8 Species Balance 118 6.9 Electrode Surface Potentials 119 6.10 Further Examination of Concentration Ratios 120 6.11 Empirical Results with Small Laboratory Cells 122 6.12 Iron/Iron Concentration Cell Properties 126 6.13 The Mechanisms of Energy Storage Cells 127 6.14 Operational Models of Sulfide Based Cells 132 6.15 Storage Solely in Bulk Electrolyte 134 6.16 More on Storage of Reagents in Adsorbed State 137 6.17 Energy Density 140 6.18 Observations Regarding Electrical Behavior 141 6.19 Concluding Comments 143 6.20 Typical Performance Characteristics 145 6.21 Sulfide/Sulfur Half Cell Balance 145 6.22 General Cell Attributes 146 6.23 Electrolyte Information 146 6.24 Concentration Cell Mechanism and Associated Mathematics 149 6.25 Calculated Performance Data 150 6.26 Another S/S
2 Cell Balance Analysis Method 153 6.27 A Different Example of a Concentration Cell, Fe+2/ Fe+3 155 6.28 Performance Calculations Based on Nernst Potentials 156 6.28.1 Constant Current Discharge 157 6.28.2 Constant Power Discharge 158 6.29 Empirical Data 160 7 Thermodynamics of Concentration Cells 163 7.1 Thermodynamic Background 163 7.2 The CIR Cell 166 8 Polysulfide - Diffusion Analysis 175 8.1 Polarization Voltages and Thermodynamics 176 8.2 Diffusion and Transport Processes at the (
) Electrode Surface 177 8.3 Electrode Surface Properties, Holes, and Pores 179 8.4 Electric (Ionic) Current Density Estimates 183 8.5 Diffusion and Supply of Reagents 184 8.6 Cell Dynamics 186 8.6.1 Electrode Processes Analyses 186 8.6.2 Polymeric Number Change 186 8.7 Further Analysis of Electrode Behavior 198 8.7.1 Flat Electrode with Some Storage Properties 198 8.8 Assessing the Values of Reagent Concentrations 206 8.9 Solving the Differential Equations 207 8.10 Cell and Negative Electrode Performance Analysis 219 8.11 General Comments 225 9 Design Considerations 227 9.1 Examination of Diffusion and Reaction Rates and Cell Design 227 9.2 Electrodes 228 9.3 Physical Spacing in Cell Designs 229 9.3.1 Electrode Structures 229 9.4 Carbon-Polymer Composite Electrodes 233 9.4.1 Particle Shapes and Sizes 235 9.4.2 Metal to Carbon Resistance 235 9.4.3 Cell Spacing 236 9.5 Resistance Measurements in Test Cells 237 9.6 Electrolytes and Membranes 239 9.7 Energy and Power Density Compromises 240 9.8 Overcharging Effects on Cells 244 9.9 Imbalance Considerations 244 10 Electrolytes, Separators, and Membranes 245 10.1 Electrolyte Classifications 246 10.2 Ionic Conductivity 247 10.2.1 Measurement Techniques 247 10.2.2 Nyquist Plot Circuit Fitting 249 10.3 Ion Conduction Theory 251 10.3.1 Ion Conduction in Liquid Electrolytes 252 10.3.2 Ion Conduction in Polymer Electrolytes 256 10.3.3 Ion Conduction in Ceramic Electrolytes 260 10.4 Factors Affecting Ion Conductivity 262 10.5 Transference Number 263 10.6 Electrolytes for Lithium Ion Batteries 264 10.6.1 Liquid Electrolytes 264 10.6.1.1 Non-Aqueous Electrolytes 264 10.6.1.2 Aqueous Electrolytes 268 10.6.2 Solid and Quasi-Solid Electrolytes 270 10.6.2.1 Polymer Electrolytes 270 10.6.2.2 Ceramic Electrolytes 272 10.7 Electrolytes for Supercapacitors 272 10.8 Electrolytes for Fuel Cells 276 10.9 Fillers and Additives 282 11 Single Cell Empirical Data 283 11.1 Design and Construction of Cells and the Materials Employed 283 11.2 Experimental Data 287 12 Conclusions and Future Trends 289 12.1 Future of Energy Storage 289 12.2 Flexible and Stretchable Energy Storage Devices 290 12.3 Self-Charging Energy Storage Devices 294 12.4 Recovering Wasted Energy 295 12.5 Recycling Energy Storage Devices 298 12.6 New Chemistry for Electrochemical Cells 300 12.7 Non-Electrochemical Energy Storage 301 12.8 Concentration Cells 302 12.8.1 Pros and Cons of Concentration Cells 303 12.8.2 Future Performance and Limitations 304 Appendix 1 307 Appendix 2 323 Bibliography 335 Index 341
54 3.3.1 Redox Full-Flow Electrolyte Systems 54 3.3.2 Full Flow and Static Electrolyte System Comparisons 55 4 Practical Purposes of Energy Storage 59 4.1 The Need for Storage 59 4.2 The Need for Secondary Energy Systems 62 4.2.1 Comparisons and Background Information 63 4.3 Sizing Power Requirements of Familiar Activities 64 4.3.1 Examples of Directly Available Human Manual Power Mechanically Unaided 66 4.3.1.1 Arm Throwing 66 4.3.1.2 Vehicle Propulsion by Human Powered Leg Muscles 66 4.3.1.3 Mechanical Storage: Archer's Bow and Arrow 67 4.4 On-the-Road Vehicles 69 4.4.1 Land Vehicle Propulsion Requirements Summary 69 4.5 Rocket Propulsion Energy Needs Comparison 70 5 Competing Storage Methods 71 5.1 Problems with Batteries 72 5.2 Hydrocarbon Fuel: Energy Density Data 75 5.3 Electrochemical Cells 77 5.4 Metal-Halogen and Half-Redox Couples 78 5.5 Full Redox Couples 83 5.6 Possible Applications 85 6 The Concentration Cell 89 6.1 Colligative Properties of Matter 89 6.2 Electrochemical Application of Colligative Properties 91 6.2.1 Compressed Gas 93 6.2.2 Osmosis 94 6.2.3 Electrostatic Capacitor 95 6.2.4 Concentration Cells: CIR (Common Ion Redox) 96 6.3 Further Discussions on Fundamental Issues 101 6.4 Adsorption and Diffusion Rate Balance 107 6.5 Storage by Adsorption and Solids Precipitation 109 6.6 Some Interesting Aspects of Concentration Cells 113 6.7 Concentration Cell Storage Mechanisms that Employ Sulfur 116 6.8 Species Balance 118 6.9 Electrode Surface Potentials 119 6.10 Further Examination of Concentration Ratios 120 6.11 Empirical Results with Small Laboratory Cells 122 6.12 Iron/Iron Concentration Cell Properties 126 6.13 The Mechanisms of Energy Storage Cells 127 6.14 Operational Models of Sulfide Based Cells 132 6.15 Storage Solely in Bulk Electrolyte 134 6.16 More on Storage of Reagents in Adsorbed State 137 6.17 Energy Density 140 6.18 Observations Regarding Electrical Behavior 141 6.19 Concluding Comments 143 6.20 Typical Performance Characteristics 145 6.21 Sulfide/Sulfur Half Cell Balance 145 6.22 General Cell Attributes 146 6.23 Electrolyte Information 146 6.24 Concentration Cell Mechanism and Associated Mathematics 149 6.25 Calculated Performance Data 150 6.26 Another S/S
2 Cell Balance Analysis Method 153 6.27 A Different Example of a Concentration Cell, Fe+2/ Fe+3 155 6.28 Performance Calculations Based on Nernst Potentials 156 6.28.1 Constant Current Discharge 157 6.28.2 Constant Power Discharge 158 6.29 Empirical Data 160 7 Thermodynamics of Concentration Cells 163 7.1 Thermodynamic Background 163 7.2 The CIR Cell 166 8 Polysulfide - Diffusion Analysis 175 8.1 Polarization Voltages and Thermodynamics 176 8.2 Diffusion and Transport Processes at the (
) Electrode Surface 177 8.3 Electrode Surface Properties, Holes, and Pores 179 8.4 Electric (Ionic) Current Density Estimates 183 8.5 Diffusion and Supply of Reagents 184 8.6 Cell Dynamics 186 8.6.1 Electrode Processes Analyses 186 8.6.2 Polymeric Number Change 186 8.7 Further Analysis of Electrode Behavior 198 8.7.1 Flat Electrode with Some Storage Properties 198 8.8 Assessing the Values of Reagent Concentrations 206 8.9 Solving the Differential Equations 207 8.10 Cell and Negative Electrode Performance Analysis 219 8.11 General Comments 225 9 Design Considerations 227 9.1 Examination of Diffusion and Reaction Rates and Cell Design 227 9.2 Electrodes 228 9.3 Physical Spacing in Cell Designs 229 9.3.1 Electrode Structures 229 9.4 Carbon-Polymer Composite Electrodes 233 9.4.1 Particle Shapes and Sizes 235 9.4.2 Metal to Carbon Resistance 235 9.4.3 Cell Spacing 236 9.5 Resistance Measurements in Test Cells 237 9.6 Electrolytes and Membranes 239 9.7 Energy and Power Density Compromises 240 9.8 Overcharging Effects on Cells 244 9.9 Imbalance Considerations 244 10 Electrolytes, Separators, and Membranes 245 10.1 Electrolyte Classifications 246 10.2 Ionic Conductivity 247 10.2.1 Measurement Techniques 247 10.2.2 Nyquist Plot Circuit Fitting 249 10.3 Ion Conduction Theory 251 10.3.1 Ion Conduction in Liquid Electrolytes 252 10.3.2 Ion Conduction in Polymer Electrolytes 256 10.3.3 Ion Conduction in Ceramic Electrolytes 260 10.4 Factors Affecting Ion Conductivity 262 10.5 Transference Number 263 10.6 Electrolytes for Lithium Ion Batteries 264 10.6.1 Liquid Electrolytes 264 10.6.1.1 Non-Aqueous Electrolytes 264 10.6.1.2 Aqueous Electrolytes 268 10.6.2 Solid and Quasi-Solid Electrolytes 270 10.6.2.1 Polymer Electrolytes 270 10.6.2.2 Ceramic Electrolytes 272 10.7 Electrolytes for Supercapacitors 272 10.8 Electrolytes for Fuel Cells 276 10.9 Fillers and Additives 282 11 Single Cell Empirical Data 283 11.1 Design and Construction of Cells and the Materials Employed 283 11.2 Experimental Data 287 12 Conclusions and Future Trends 289 12.1 Future of Energy Storage 289 12.2 Flexible and Stretchable Energy Storage Devices 290 12.3 Self-Charging Energy Storage Devices 294 12.4 Recovering Wasted Energy 295 12.5 Recycling Energy Storage Devices 298 12.6 New Chemistry for Electrochemical Cells 300 12.7 Non-Electrochemical Energy Storage 301 12.8 Concentration Cells 302 12.8.1 Pros and Cons of Concentration Cells 303 12.8.2 Future Performance and Limitations 304 Appendix 1 307 Appendix 2 323 Bibliography 335 Index 341