Energy Transfers by Radiation (eBook, ePUB)
Alle Infos zum eBook verschenken
Energy Transfers by Radiation (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Inside industrial furnaces and combustion chambers, energy is essentially exchanged by radiation. It is through the same mechanism that the energy emitted by the Sun spreads through different media to reach the Earth. Developing a sound understanding of the laws underlying energy exchanges by radiation is therefore essential, not only for establishing design equations for industrial equipment, but also for an optimal harvesting of solar energy and a better understanding of climate change phenomena such as the greenhouse effect. Energy Transfers by Radiation establishes the basic laws and…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 12.23MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 352
- Erscheinungstermin: 24. Mai 2019
- Englisch
- ISBN-13: 9781119629443
- Artikelnr.: 57129041
- Verlag: John Wiley & Sons
- Seitenzahl: 352
- Erscheinungstermin: 24. Mai 2019
- Englisch
- ISBN-13: 9781119629443
- Artikelnr.: 57129041
81 6.3.12. Configuration 12: elementary surface placed on the normal to a plane 82 6.3.13. Configuration 13: elementary surface placed on a plane perpendicular to a rectangle 83 6.3.14. Configuration 14: two parallel discs with the same axis 84 6.3.15. Configuration 15: elementary source placed on the normal of a disc 84 6.3.16. Configuration 16: two infinite cylinders with parallel axes 85 6.3.17. Configuration 17: two infinite coaxial cylinders 85 6.3.18. Configuration 18: finite coaxial cylinders 86 6.3.19. Configuration 19: elementary source of arbitrary length, parallel to an infinite cylinder 87 6.3.20. Configuration 20: spherical point source and sphere of radius R 88 6.3.21. Configuration 21: elementary plane and sphere of radius R 88 6.3.22. Configuration 22: elementary plane whose tangent passes through the center of a sphere 89 6.3.23. Configuration 23: sphere and disc with the same axis 89 6.3.24. Configuration 24: prism of infinite length and triangular cross-sectional area 90 6.3.25. Illustration: calculating the angle factors of two planes intersecting at 45° 91 6.3.26. Illustration: calculating the angle factors of parallel discs 92 6.3.27. Illustration: parallel planes, with the same axis and surface area 93 6.3.28. Illustration: calculating the angle factor for two perpendicular, rectangular planes with a side in common 94 6.3.29. Illustration: development of charts for inclined planes of different dimensions 96 Chapter 7. Balances of Radiative Energy Transfers between Black Surfaces 99 7.1. Introduction 99 7.2. Establishing balance equations 100 7.3. Solving radiation balances for black surfaces 101 7.3.1. Surfaces with imposed fluxes 102 7.3.2. Surfaces at imposed temperatures 102 7.3.3. Case where certain fluxes and certain temperatures are imposed 102 7.3.4. Illustration: radiation transfers in a baking oven 102 7.3.5. Illustration: design of an industrial furnace with imposed temperatures 110 Chapter 8. Balances on Radiative Energy Transfers between Gray Surfaces 119 8.1. Introduction 119 8.2. Reminder of the radiative properties of real surfaces 119 8.3. Radiosity 120 8.4. Balances on gray surfaces 121 8.4.1. Establishing the balance on Si 121 8.4.2. Simplifying the balance equation 123 8.5. Solving the radiation balance equations between gray surfaces 123 8.5.1. Surfaces with imposed fluxes 124 8.5.2. Surfaces at imposed temperatures 125 8.5.3. Scenario where certain fluxes and certain temperatures are imposed 126 8.5.4. Illustration: industrial furnace with gray adiabatic walls 128 Chapter 9. Electrical Analogies in Radiation 135 9.1. Introduction 135 9.2. Analogies for black surfaces 135 9.2.1. Electrical analog representing emittances 136 9.2.2. Electrical analog representing temperatures 137 9.2.3. Electrical analog representing the flux density 137 9.2.4. Illustration: calculating the flux density by electrical analogy 138 9.3. Electrical analogies for heat transfer between gray surfaces 139 9.3.1. Electrical analog representing radiosities 139 9.3.2. Electrical analogy representing temperatures 140 9.3.3. Illustration: determining net fluxes in an industrial furnace 142 9.4. Gray shape factor 145 9.5. Illustration: gray shape factor of the industrial furnace with adiabatic walls 146 Chapter 10. Reduction of Radiating Energy Transfers through Filtering 153 10.1. Introduction 153 10.2. Expressing the flux density for a filterless transfer 154 10.3. Reducing the flux through filtering 156 10.4. Comparing q0 and qm 158 10.5. Scenario where plates S0 and Sn have the same emissivity 159 10.5.1. Situation without filter (m = 0) 159 10.5.2. Situation with m filters (m
0) with emissivities equal to
159 10.5.3. Illustration: reducing radiative energy transfers through filtration 160 Chapter 11. Radiative Energy Transfers in Semi-transparent Media 163 11.1. Introduction 163 11.2. Radiation in semi-transparent gases 164 11.2.1. Beer's law 165 11.2.2. Alternative expression of Beer's law 166 11.2.3. Transmissivity of semi-transparent gases 167 11.2.4. Transmission of energy between surfaces separated by a semi-transparent medium 167 11.2.5. Spectral absorptivity of a semi-transparent gas 170 11.2.6. Spectral emissivity of a semi-transparent gas 171 11.2.7. Practical determination of parameters and radiative fluxes of semi-transparent gases 171 11.2.8. Radiative behavior of an optically thick gas 172 11.3. Illustration: calculating the flux radiated by combustion gases 173 11.4. Reading: discovery of the Stefan-Boltzmann law 174 Chapter 12. Exercises and Solutions 179 Appendix 247 References 309 Index 323
81 6.3.12. Configuration 12: elementary surface placed on the normal to a plane 82 6.3.13. Configuration 13: elementary surface placed on a plane perpendicular to a rectangle 83 6.3.14. Configuration 14: two parallel discs with the same axis 84 6.3.15. Configuration 15: elementary source placed on the normal of a disc 84 6.3.16. Configuration 16: two infinite cylinders with parallel axes 85 6.3.17. Configuration 17: two infinite coaxial cylinders 85 6.3.18. Configuration 18: finite coaxial cylinders 86 6.3.19. Configuration 19: elementary source of arbitrary length, parallel to an infinite cylinder 87 6.3.20. Configuration 20: spherical point source and sphere of radius R 88 6.3.21. Configuration 21: elementary plane and sphere of radius R 88 6.3.22. Configuration 22: elementary plane whose tangent passes through the center of a sphere 89 6.3.23. Configuration 23: sphere and disc with the same axis 89 6.3.24. Configuration 24: prism of infinite length and triangular cross-sectional area 90 6.3.25. Illustration: calculating the angle factors of two planes intersecting at 45° 91 6.3.26. Illustration: calculating the angle factors of parallel discs 92 6.3.27. Illustration: parallel planes, with the same axis and surface area 93 6.3.28. Illustration: calculating the angle factor for two perpendicular, rectangular planes with a side in common 94 6.3.29. Illustration: development of charts for inclined planes of different dimensions 96 Chapter 7. Balances of Radiative Energy Transfers between Black Surfaces 99 7.1. Introduction 99 7.2. Establishing balance equations 100 7.3. Solving radiation balances for black surfaces 101 7.3.1. Surfaces with imposed fluxes 102 7.3.2. Surfaces at imposed temperatures 102 7.3.3. Case where certain fluxes and certain temperatures are imposed 102 7.3.4. Illustration: radiation transfers in a baking oven 102 7.3.5. Illustration: design of an industrial furnace with imposed temperatures 110 Chapter 8. Balances on Radiative Energy Transfers between Gray Surfaces 119 8.1. Introduction 119 8.2. Reminder of the radiative properties of real surfaces 119 8.3. Radiosity 120 8.4. Balances on gray surfaces 121 8.4.1. Establishing the balance on Si 121 8.4.2. Simplifying the balance equation 123 8.5. Solving the radiation balance equations between gray surfaces 123 8.5.1. Surfaces with imposed fluxes 124 8.5.2. Surfaces at imposed temperatures 125 8.5.3. Scenario where certain fluxes and certain temperatures are imposed 126 8.5.4. Illustration: industrial furnace with gray adiabatic walls 128 Chapter 9. Electrical Analogies in Radiation 135 9.1. Introduction 135 9.2. Analogies for black surfaces 135 9.2.1. Electrical analog representing emittances 136 9.2.2. Electrical analog representing temperatures 137 9.2.3. Electrical analog representing the flux density 137 9.2.4. Illustration: calculating the flux density by electrical analogy 138 9.3. Electrical analogies for heat transfer between gray surfaces 139 9.3.1. Electrical analog representing radiosities 139 9.3.2. Electrical analogy representing temperatures 140 9.3.3. Illustration: determining net fluxes in an industrial furnace 142 9.4. Gray shape factor 145 9.5. Illustration: gray shape factor of the industrial furnace with adiabatic walls 146 Chapter 10. Reduction of Radiating Energy Transfers through Filtering 153 10.1. Introduction 153 10.2. Expressing the flux density for a filterless transfer 154 10.3. Reducing the flux through filtering 156 10.4. Comparing q0 and qm 158 10.5. Scenario where plates S0 and Sn have the same emissivity 159 10.5.1. Situation without filter (m = 0) 159 10.5.2. Situation with m filters (m
0) with emissivities equal to
159 10.5.3. Illustration: reducing radiative energy transfers through filtration 160 Chapter 11. Radiative Energy Transfers in Semi-transparent Media 163 11.1. Introduction 163 11.2. Radiation in semi-transparent gases 164 11.2.1. Beer's law 165 11.2.2. Alternative expression of Beer's law 166 11.2.3. Transmissivity of semi-transparent gases 167 11.2.4. Transmission of energy between surfaces separated by a semi-transparent medium 167 11.2.5. Spectral absorptivity of a semi-transparent gas 170 11.2.6. Spectral emissivity of a semi-transparent gas 171 11.2.7. Practical determination of parameters and radiative fluxes of semi-transparent gases 171 11.2.8. Radiative behavior of an optically thick gas 172 11.3. Illustration: calculating the flux radiated by combustion gases 173 11.4. Reading: discovery of the Stefan-Boltzmann law 174 Chapter 12. Exercises and Solutions 179 Appendix 247 References 309 Index 323