11,99 €
11,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
11,99 €
11,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
11,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
11,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

Os avanços recentes na área de Ciência de Dados - em especial em Machine Learning - têm tornado viável e de relevância prática novas soluções de software, que podem aprender a partir de dados e realizar predições inteligentes. Entretanto, para que esses sistemas tenham sucesso, devem ser construídos considerando as boas práticas da área de Engenharia de Software para atenderem de fato às necessidades dos clientes. Este livro vem para consolidar a área de Engenharia de Software para Ciência de Dados e capacitar profissionais interessados ou atuantes em Ciência de Dados na construção de sistemas…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 17.06MB
  • FamilySharing(5)
Produktbeschreibung
Os avanços recentes na área de Ciência de Dados - em especial em Machine Learning - têm tornado viável e de relevância prática novas soluções de software, que podem aprender a partir de dados e realizar predições inteligentes. Entretanto, para que esses sistemas tenham sucesso, devem ser construídos considerando as boas práticas da área de Engenharia de Software para atenderem de fato às necessidades dos clientes. Este livro vem para consolidar a área de Engenharia de Software para Ciência de Dados e capacitar profissionais interessados ou atuantes em Ciência de Dados na construção de sistemas baseados em Machine Learning, ao mostrar como construir esses sistemas end-to-end, adaptando e aplicando as melhores práticas para esse contexto. Você entenderá como aplicar abordagens ágeis para a engenharia de sistemas inteligentes e aprenderá a especificar e desenvolver sistemas baseados em Machine Learning na prática em Python, utilizando os principais algoritmos de classificação e regressão, seguindo princípios de projeto e boas práticas de codificação. Você verá como realizar o controle de qualidade de sistemas inteligentes, além de conhecer alternativas para essa arquitetura, com diferentes formas de implantação de modelos, incluindo na nuvem. Por fim, conhecerá conceitos de gerência de configuração e DevOps, comumente empregados neste tipo de projeto. O livro compila evidências científicas e experiências práticas de formação dos autores, que em 2021 criaram o primeiro curso de extensão em Engenharia de Software para Ciência de Dados do país, formando centenas de alunos em diversas turmas oferecidas pela PUC-Rio, tanto abertas quanto in-company.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Marcos Kalinowski Professor do Quadro Principal do Departamento de Informática da PUC-Rio, onde orienta pesquisas de mestrado e doutorado e coordena projetos de pesquisa e desenvolvimento junto a diversas empresas nas áreas de Engenharia de Software e Ciência de Dados através da iniciativa ExACTa PUC-Rio. Doutor e mestre em Engenharia de Sistemas e Computação na área de Engenharia de Software e bacharel em Ciência da Computação, todos pela UFRJ. Atuou por mais de 10 anos na indústria de software antes de se tornar professor (como desenvolvedor, consultor e diretor). É bolsista de produtividade do CNPq e possui mais de 150 artigos publicados nos principais veículos da sua área de atuação. Tatiana Escovedo Professora do Departamento de Informática da PUC-Rio, onde coordena cursos de pós-graduação lato sensu e colabora com pesquisas nas áreas de Ciência de Dados e Engenharia de Software. Gerente da área de Tecnologia, Gestão de Dados e Conhecimento da diretoria de Comercialização e Logística da Petrobras. Doutora em Engenharia Elétrica, na área de Métodos de Apoio à Decisão, Mestre em Informática na área de Engenharia de Software e bacharel em Sistemas de Informação, todos pela PUC-Rio. Autora de diversos livros e artigos na sua área de atuação. Hugo Villamizar Professor de cursos de extensão e doutorando do Departamento de Informática da PUC-Rio, orientado pelo Professor Dr. Marcos Kalinowski. Formado em Sistemas de Informação pela Universidade Nacional da Colômbia e mestre em Informática pela PUC-Rio na área de Engenharia de Software, com dissertação premiada. Analista de Pesquisa e Desenvolvimento na iniciativa ExACTa PUC-Rio, atuando como engenheiro de software para sistemas habilitados em aprendizado de máquina, desde a especificação até sua implantação na nuvem. Hélio Lopes Professor do Quadro Principal do Departamento de Informática da PUC-Rio, onde orienta pesquisas de mestrado e doutorado e coordena projetos de pesquisa e desenvolvimento junto a diversas empresas na área de Ciência de Dados através da iniciativa ExACTa PUC-Rio. Doutor em Matemática, mestre em Informática e Engenheiro da Computação, todos pela PUC-Rio. Tem mais de 30 anos de experiência coordenando projetos de pesquisa e desenvolvimento junto a diversas empresas, tendo registrado patentes e acumulado premiações nesse contexto. É bolsista de produtividade do CNPq e possui mais de 150 artigos publicados nos principais veículos da sua área de atuação.