Engineering and Technology for Healthcare (eBook, ePUB)
Alle Infos zum eBook verschenken
Engineering and Technology for Healthcare (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Innovation in healthcare is currently a "hot" topic. Innovation allows us to think differently, to take risks and to develop ideas that are far better than existing solutions. Currently, there is no single book that covers all topics related to microelectronics, sensors, data, system integration and healthcare technology assessment in one reference. This book aims to critically evaluate current state-of-the-art technologies and provide readers with insights into developing new solutions. With contributions from a fully international team of experts across electrical engineering and biomedical…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 18.85MB
- Muhammad Ali ImranEngineering and Technology for Healthcare (eBook, PDF)108,99 €
- Safwan El AssadDigital Communications 2 (eBook, ePUB)139,99 €
- Badr BenmammarIntelligent Network Management and Control (eBook, ePUB)139,99 €
- Service Level Management in Emerging Environments (eBook, ePUB)139,99 €
- Jack L. BurbankWireless Networking (eBook, ePUB)127,99 €
- The Handbook of MPEG Applications (eBook, ePUB)98,99 €
- Smart Buildings, Smart Communities and Demand Response (eBook, ePUB)156,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley-IEEE Press
- Seitenzahl: 240
- Erscheinungstermin: 25. November 2020
- Englisch
- ISBN-13: 9781119644286
- Artikelnr.: 60739374
- Verlag: Wiley-IEEE Press
- Seitenzahl: 240
- Erscheinungstermin: 25. November 2020
- Englisch
- ISBN-13: 9781119644286
- Artikelnr.: 60739374
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Introduction xv
1 Maximizing the Value of Engineering and Technology Research in Healthcare: Development-Focused Health Technology Assessment 1
Janet Boutell Hawkins and Eleanor Grieve
1.1 Introduction 1
1.2 What Is HTA? 3
1.3 What Is Development-Focused HTA? 4
1.4 Illustration of Features of Development-Focused HTA 5
1.4.1 Use-Focused HTA 6
1.4.2 Development-Focused HTA 6
1.5 Activities of Development-Focused HTA 7
1.6 Analytical Methods of Development-Focused HTA 9
1.6.1 Clinical Value Assessment 11
1.6.2 Economic Value Assessment 11
1.6.3 Evidence Generation 14
1.7 What Are the Challenges in the Development and Assessment of Medical Devices? 15
1.7.1 What Are Medical Devices? 15
1.7.2 Challenges Common to All medical Devices 16
1.7.2.1 Licensing and Regulation 16
1.7.2.2 Adoption 17
1.7.2.3 Evidence 18
1.7.3 Challenges Specific to Some Categories of Device 19
1.7.3.1 Learning Curve 19
1.7.3.2 Short Lifespan and Incremental Improvement 19
1.7.3.3 Workflow 19
1.7.3.4 Indirect Health Benefit 19
1.7.3.5 Behavioral and Other Contextual Factors 20
1.7.3.6 Budgetary Challenges 20
1.8 The Contribution of DF-HTA in the Development and Translation of Medical Devices 20
1.8.1 Case Study 1 - Identifying and Confirming Needs 21
1.8.2 Case Study 2 - What Difference Could This Device Make? 21
1.8.3 Case Study 3 - Which Research Project Has the Most Potential? 21
1.8.4 Case Study 4 - What Is the Required Performance to Deliver Clinical Utility? 21
1.8.5 Case Study 5 - What Are the Key Parameters for Evidence Generation? 22
1.9 Conclusion 22
References 23
2 Contactless Radar Sensing for Health Monitoring 29
Francesco Fioranelli and Julien Le Kernec
2.1 Introduction: Healthcare Provision and Radar Technology 29
2.2 Radar and Radar Data Fundamentals 32
2.2.1 Principles of Radar Systems 32
2.2.2 Principles of Radar Signal Processing for Health Applications 35
2.2.3 Principles of Machine Learning Applied to Radar Data 38
2.2.4 Complementary Approaches: Passive Radar and Channel State Information Sensing 41
2.3 Radar Technology in Use for Health Care 42
2.3.1 Activities Recognition and Fall Detection 42
2.3.2 Gait Monitoring 46
2.3.3 Vital Signs and Sleep Monitoring 48
2.4 Conclusion and Outstanding Challenges 50
2.5 Future Trends 52
2.5.1 Paradigm Change in Radar Sensing 52
2.5.2 Multimodal Sensing 55
References 55
3 Pervasive Sensing: Macro to Nanoscale 61
Qammer H. Abbasi, Hasan T. Abbas, Muhammad Ali Imran and Akram Alomainy
3.1 Introduction 61
3.2 The Anatomy of a Human Skin 64
3.3 Characterization of Human Tissue 65
3.4 Tissue Sample Preparation 70
3.5 Measurement Apparatus 70
3.6 Simulating the Human Skin 72
3.6.1 Human Body Channel Modelling 73
3.7 Networking and Communication Mechanisms for Body-Centric Wireless Nano-Networks 76
3.8 Concluding Remarks 78
References 78
4 Biointegrated Implantable Brain Devices 81
Rupam Das and Hadi Heidari
4.1 Background 81
4.2 Neural Device Interfaces 83
4.3 Implant Tissue Biointegration 84
4.4 MRI Compatibility of the Neural Devices 87
4.5 Conclusion 90
References 90
5 Machine Learning
Introduction xv
1 Maximizing the Value of Engineering and Technology Research in Healthcare: Development-Focused Health Technology Assessment 1
Janet Boutell Hawkins and Eleanor Grieve
1.1 Introduction 1
1.2 What Is HTA? 3
1.3 What Is Development-Focused HTA? 4
1.4 Illustration of Features of Development-Focused HTA 5
1.4.1 Use-Focused HTA 6
1.4.2 Development-Focused HTA 6
1.5 Activities of Development-Focused HTA 7
1.6 Analytical Methods of Development-Focused HTA 9
1.6.1 Clinical Value Assessment 11
1.6.2 Economic Value Assessment 11
1.6.3 Evidence Generation 14
1.7 What Are the Challenges in the Development and Assessment of Medical Devices? 15
1.7.1 What Are Medical Devices? 15
1.7.2 Challenges Common to All medical Devices 16
1.7.2.1 Licensing and Regulation 16
1.7.2.2 Adoption 17
1.7.2.3 Evidence 18
1.7.3 Challenges Specific to Some Categories of Device 19
1.7.3.1 Learning Curve 19
1.7.3.2 Short Lifespan and Incremental Improvement 19
1.7.3.3 Workflow 19
1.7.3.4 Indirect Health Benefit 19
1.7.3.5 Behavioral and Other Contextual Factors 20
1.7.3.6 Budgetary Challenges 20
1.8 The Contribution of DF-HTA in the Development and Translation of Medical Devices 20
1.8.1 Case Study 1 - Identifying and Confirming Needs 21
1.8.2 Case Study 2 - What Difference Could This Device Make? 21
1.8.3 Case Study 3 - Which Research Project Has the Most Potential? 21
1.8.4 Case Study 4 - What Is the Required Performance to Deliver Clinical Utility? 21
1.8.5 Case Study 5 - What Are the Key Parameters for Evidence Generation? 22
1.9 Conclusion 22
References 23
2 Contactless Radar Sensing for Health Monitoring 29
Francesco Fioranelli and Julien Le Kernec
2.1 Introduction: Healthcare Provision and Radar Technology 29
2.2 Radar and Radar Data Fundamentals 32
2.2.1 Principles of Radar Systems 32
2.2.2 Principles of Radar Signal Processing for Health Applications 35
2.2.3 Principles of Machine Learning Applied to Radar Data 38
2.2.4 Complementary Approaches: Passive Radar and Channel State Information Sensing 41
2.3 Radar Technology in Use for Health Care 42
2.3.1 Activities Recognition and Fall Detection 42
2.3.2 Gait Monitoring 46
2.3.3 Vital Signs and Sleep Monitoring 48
2.4 Conclusion and Outstanding Challenges 50
2.5 Future Trends 52
2.5.1 Paradigm Change in Radar Sensing 52
2.5.2 Multimodal Sensing 55
References 55
3 Pervasive Sensing: Macro to Nanoscale 61
Qammer H. Abbasi, Hasan T. Abbas, Muhammad Ali Imran and Akram Alomainy
3.1 Introduction 61
3.2 The Anatomy of a Human Skin 64
3.3 Characterization of Human Tissue 65
3.4 Tissue Sample Preparation 70
3.5 Measurement Apparatus 70
3.6 Simulating the Human Skin 72
3.6.1 Human Body Channel Modelling 73
3.7 Networking and Communication Mechanisms for Body-Centric Wireless Nano-Networks 76
3.8 Concluding Remarks 78
References 78
4 Biointegrated Implantable Brain Devices 81
Rupam Das and Hadi Heidari
4.1 Background 81
4.2 Neural Device Interfaces 83
4.3 Implant Tissue Biointegration 84
4.4 MRI Compatibility of the Neural Devices 87
4.5 Conclusion 90
References 90
5 Machine Learning