129,95 €
129,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
65 °P sammeln
129,95 €
129,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
65 °P sammeln
Als Download kaufen
129,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
65 °P sammeln
Jetzt verschenken
129,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
65 °P sammeln
  • Format: PDF

This book focuses on the challenges and potentials of open source and collaborative design approaches and strategies in the biomedical field. It provides a comprehensive set of good practices and methods for making these safe, innovative and certifiable biomedical devices reach patients and provide successful solutions to healthcare issues. The chapters are sequenced to follow the complete lifecycle of open source medical technologies. The information provided is eminently practical, as it is supported by real cases of study, in which collaboration among medical professionals, engineers and…mehr

Produktbeschreibung
This book focuses on the challenges and potentials of open source and collaborative design approaches and strategies in the biomedical field. It provides a comprehensive set of good practices and methods for making these safe, innovative and certifiable biomedical devices reach patients and provide successful solutions to healthcare issues. The chapters are sequenced to follow the complete lifecycle of open source medical technologies. The information provided is eminently practical, as it is supported by real cases of study, in which collaboration among medical professionals, engineers and technicians, patients and patient associations, policy makers, regulatory bodies, and citizens has proven beneficial. The book is also supported by an online infrastructure, UBORA, through which open-source medical devices can be collaboratively developed and shared for the democratization of medical technology and for promoting accessible biomedical engineering education.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Arti Ahluwalia, PhD, is Professor of Bioengineering at the University of Pisa (Italy). She has over 100 publications in the field of medical devices, biosensing, biomaterials, bioreactors, cell imaging and biomimetics and 15 patents, 5 of which have been industrialised. She has pioneered Open Education in BME in Africa (she was the coordinator of the UBORA project) and is a Scientific and Education Consultant for United Nation Economic Commission for Africa. Carmelo De Maria, PhD, is Assistant Professor of Bioengineering at the University of Pisa. His research interests are in the field of additive manufacturing technologies, with a particular focus in Biomedical applications, including Bioprinting and the prototyping of Medical Devices. He has several papers published in international scientific journals (over 70) and in 2016 he was awarded 1st prize as Young Investigator from the International Society for Biofabrication. Andrés Díaz Lantada, PhD, is Professor of MechanicalEngineering at the Universidad Politecnica de Madrid. His research interests are linked to the development of mechanical systems and biomedical devices with improved capabilities, thanks to the incorporation of smart materials, special geometries and complex functional structures, attainable by additive manufacturing processes. He received the "Medal to Researchers under 40" by the Spanish Royal Academy of Engineering in 2015 and the "UPM Award to Educational Innovation Groups", as coordinator, in 2020. He is co-author of 75+ publications in international journals and author of 3 books on medical technologies. All three Editors have been fostering the emergent field of safe open-source medical devices through the UBORA e-platform, for innovating the biomedical industry through education.