116,99 €
116,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
116,99 €
116,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
116,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
116,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

Polymers have played a critical role in the rational design and application of drug delivery systems that increase the efficacy and reduce the toxicity of new and conventional therapeutics. Beginning with an introduction to the fundamentals of drug delivery, Engineering Polymer Systems for Improved Drug Delivery explores traditional drug delivery techniques as well as emerging advanced drug delivery techniques. By reviewing many types of polymeric drug delivery systems, and including key points, worked examples and homework problems, this book will serve as a guide to for specialists and…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 16.92MB
Produktbeschreibung
Polymers have played a critical role in the rational design and application of drug delivery systems that increase the efficacy and reduce the toxicity of new and conventional therapeutics. Beginning with an introduction to the fundamentals of drug delivery, Engineering Polymer Systems for Improved Drug Delivery explores traditional drug delivery techniques as well as emerging advanced drug delivery techniques. By reviewing many types of polymeric drug delivery systems, and including key points, worked examples and homework problems, this book will serve as a guide to for specialists and non-specialists as well as a graduate level text for drug delivery courses.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
REBECCA A. BADER, PhD, is Assistant Professor in the Department of Biomedical & Chemical Engineering at Syracuse University and resident member of the Syracuse Biomaterials Institute. Combining her expertise in chemistry and materials science, Dr. Bader's current research focuses on the development of polysaccharide-based carrier systems for targeted delivery in the treatment of rheumatoid arthritis, biofilm-related diseases, cancer, and vascular diseases. DAVID A. PUTNAM, PhD, is Associate Professor in the College of Engineering at Cornell University. His research is dedicated to the rational design and synthesis of functional biomaterials to facilitate targeted and controlled drug delivery. Dr. Putnam is a Fellow of the Coulter Foundation and the American Institute for Medical and Biological Engineering, an honor bestowed upon the top 2% of biomedical engineers in the United States.