89,95 €
89,95 €
inkl. MwSt.
Sofort per Download lieferbar
89,95 €
89,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
89,95 €
inkl. MwSt.
Sofort per Download lieferbar
Jetzt verschenken
89,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
  • Format: PDF

This self-contained introduction shows how ensemble methods are used in real-world tasks. It first presents background and terminology for readers unfamiliar with machine learning and pattern recognition. The book then covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, and diversity measures. Moving on to more advanced topics, the author explains details behind ensemble pruning and clustering ensembles. He also describes developments in semi-supervised learning, active learning, cost-sensitive learning, class-imbalance learning, and comprehensibility enhancement.…mehr

Produktbeschreibung
This self-contained introduction shows how ensemble methods are used in real-world tasks. It first presents background and terminology for readers unfamiliar with machine learning and pattern recognition. The book then covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, and diversity measures. Moving on to more advanced topics, the author explains details behind ensemble pruning and clustering ensembles. He also describes developments in semi-supervised learning, active learning, cost-sensitive learning, class-imbalance learning, and comprehensibility enhancement.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Zhi-Hua Zhou is a professor in the Department of Computer Science and Technology and the National Key Laboratory for Novel Software Technology at Nanjing University. Dr. Zhou is the founding steering committee co-chair of ACML and associate editor-in-chief, associate editor, and editorial board member of numerous journals. He has published extensively in top-tier journals, chaired many conferences, and won six international journal/conference/competition awards. His research interests encompass the areas of machine learning, data mining, pattern recognition, and multimedia information retrieval.