Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Entropy Randomization in Machine Learning presents a new approach to machine learning - entropy randomization - to obtain optimal solutions under uncertainty (uncertain data and models of the objects under study).
Entropy Randomization in Machine Learning presents a new approach to machine learning - entropy randomization - to obtain optimal solutions under uncertainty (uncertain data and models of the objects under study).
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Yuri S. Popkov: Doctor of Engineering, Professor, Academician of Russian Academy of Sciences; Chief Researcher at Federal Research Center "Computer Science and Control," Russian Academy of Sciences; Chief Researcher at Trapeznikov Institute of Control Sciences, Russian Academy of Sciences; Professor at Lomonosov Moscow State University. Author of more than 250 scientific publications, including 15 monographs. His research interests include stochastic dynamic systems, optimization, machine learning, and macrosystem modeling.
Alexey Yu. Popkov: Candidate of Sciences, Leading Researcher at Federal Research Center "Computer Science and Control," Russian Academy of Sciences; author of 47 scientific publications. His research interests include software engineering, high-performance computing, data mining, machine learning, and entropy methods.
Yuri A. Dubnov: MSc in Physics, Researcher at Federal Research Center "Computer Science and Control," Russian Academy of Sciences. Author of more than 18 scientific publications. His research interests include machine learning, forecasting, randomized approaches, and Bayesian estimation.
Inhaltsangabe
Preface 1. General Concept of Machine Learning 2. Data Sources and Models Chapter 3. Dimension Reduction Methods 4. Randomized Parametric Models 5. Entropy-robust Estimation Procedures for Randomized Models and Measurement Noises 6. Entropy-Robust Estimation Methods for Probabilities of Belonging in Machine Learning Procedures 7. Computational Methods od Randomized Machine Learning 8. Generation Methods for Random Vectors with Given Probability Density Functions over Compact Sets 9. Information Technologies of Randomized Machine Learning 10. Entropy Classification 11. Randomized Machine Learning in Problems of Dynamic Regression and Prediction Appendix A: Maximum Entropy Estimate (MEE) and Its Asymptotic Efficiency Appendix B: Approximate Estimation of Structural Characteristics of Linear Dynamic Regression Model (LDR) Bibliography
Preface 1. General Concept of Machine Learning 2. Data Sources and Models Chapter 3. Dimension Reduction Methods 4. Randomized Parametric Models 5. Entropy-robust Estimation Procedures for Randomized Models and Measurement Noises 6. Entropy-Robust Estimation Methods for Probabilities of Belonging in Machine Learning Procedures 7. Computational Methods od Randomized Machine Learning 8. Generation Methods for Random Vectors with Given Probability Density Functions over Compact Sets 9. Information Technologies of Randomized Machine Learning 10. Entropy Classification 11. Randomized Machine Learning in Problems of Dynamic Regression and Prediction Appendix A: Maximum Entropy Estimate (MEE) and Its Asymptotic Efficiency Appendix B: Approximate Estimation of Structural Characteristics of Linear Dynamic Regression Model (LDR) Bibliography
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497