Yuri S. Popkov, Alexey Yu. Popkov, Yuri A. Dubnov
Entropy Randomization in Machine Learning (eBook, ePUB)
47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
47,95 €
Als Download kaufen
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Yuri S. Popkov, Alexey Yu. Popkov, Yuri A. Dubnov
Entropy Randomization in Machine Learning (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Entropy Randomization in Machine Learning presents a new approach to machine learning - entropy randomization - to obtain optimal solutions under uncertainty (uncertain data and models of the objects under study).
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 10.21MB
Andere Kunden interessierten sich auch für
- Yuri S. PopkovEntropy Randomization in Machine Learning (eBook, PDF)47,95 €
- Uday KamathTransformers for Machine Learning (eBook, ePUB)46,95 €
- Chao WangDomain-Specific Computer Architectures for Emerging Applications (eBook, ePUB)47,95 €
- Richard J. RoigerJust Enough R! (eBook, ePUB)42,95 €
- Jitendra KumarMachine Learning for Cloud Management (eBook, ePUB)59,95 €
- Mohammad RostamiTransfer Learning through Embedding Spaces (eBook, ePUB)47,95 €
- Mark StampIntroduction to Machine Learning with Applications in Information Security (eBook, ePUB)66,95 €
-
-
-
Entropy Randomization in Machine Learning presents a new approach to machine learning - entropy randomization - to obtain optimal solutions under uncertainty (uncertain data and models of the objects under study).
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 392
- Erscheinungstermin: 9. August 2022
- Englisch
- ISBN-13: 9781000628739
- Artikelnr.: 64189589
- Verlag: Taylor & Francis
- Seitenzahl: 392
- Erscheinungstermin: 9. August 2022
- Englisch
- ISBN-13: 9781000628739
- Artikelnr.: 64189589
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Yuri S. Popkov: Doctor of Engineering, Professor, Academician of Russian Academy of Sciences; Chief Researcher at Federal Research Center "Computer Science and Control," Russian Academy of Sciences; Chief Researcher at Trapeznikov Institute of Control Sciences, Russian Academy of Sciences; Professor at Lomonosov Moscow State University. Author of more than 250 scientific publications, including 15 monographs. His research interests include stochastic dynamic systems, optimization, machine learning, and macrosystem modeling.
Alexey Yu. Popkov: Candidate of Sciences, Leading Researcher at Federal Research Center "Computer Science and Control," Russian Academy of Sciences; author of 47 scientific publications. His research interests include software engineering, high-performance computing, data mining, machine learning, and entropy methods.
Yuri A. Dubnov: MSc in Physics, Researcher at Federal Research Center "Computer Science and Control," Russian Academy of Sciences. Author of more than 18 scientific publications. His research interests include machine learning, forecasting, randomized approaches, and Bayesian estimation.
Alexey Yu. Popkov: Candidate of Sciences, Leading Researcher at Federal Research Center "Computer Science and Control," Russian Academy of Sciences; author of 47 scientific publications. His research interests include software engineering, high-performance computing, data mining, machine learning, and entropy methods.
Yuri A. Dubnov: MSc in Physics, Researcher at Federal Research Center "Computer Science and Control," Russian Academy of Sciences. Author of more than 18 scientific publications. His research interests include machine learning, forecasting, randomized approaches, and Bayesian estimation.
Preface
1. General Concept of Machine Learning
2. Data Sources and Models Chapter
3. Dimension Reduction Methods
4. Randomized Parametric Models
5. Entropy-robust Estimation Procedures for Randomized Models and
Measurement Noises
6. Entropy-Robust Estimation Methods for Probabilities of Belonging in
Machine Learning Procedures
7. Computational Methods od Randomized Machine Learning
8. Generation Methods for Random Vectors with Given Probability Density
Functions over Compact Sets
9. Information Technologies of Randomized Machine Learning
10. Entropy Classification
11. Randomized Machine Learning in Problems of Dynamic Regression and
Prediction
Appendix A: Maximum Entropy Estimate (MEE) and Its Asymptotic Efficiency
Appendix B: Approximate Estimation of Structural Characteristics of Linear
Dynamic Regression Model (LDR)
Bibliography
1. General Concept of Machine Learning
2. Data Sources and Models Chapter
3. Dimension Reduction Methods
4. Randomized Parametric Models
5. Entropy-robust Estimation Procedures for Randomized Models and
Measurement Noises
6. Entropy-Robust Estimation Methods for Probabilities of Belonging in
Machine Learning Procedures
7. Computational Methods od Randomized Machine Learning
8. Generation Methods for Random Vectors with Given Probability Density
Functions over Compact Sets
9. Information Technologies of Randomized Machine Learning
10. Entropy Classification
11. Randomized Machine Learning in Problems of Dynamic Regression and
Prediction
Appendix A: Maximum Entropy Estimate (MEE) and Its Asymptotic Efficiency
Appendix B: Approximate Estimation of Structural Characteristics of Linear
Dynamic Regression Model (LDR)
Bibliography
Preface
1. General Concept of Machine Learning
2. Data Sources and Models Chapter
3. Dimension Reduction Methods
4. Randomized Parametric Models
5. Entropy-robust Estimation Procedures for Randomized Models and
Measurement Noises
6. Entropy-Robust Estimation Methods for Probabilities of Belonging in
Machine Learning Procedures
7. Computational Methods od Randomized Machine Learning
8. Generation Methods for Random Vectors with Given Probability Density
Functions over Compact Sets
9. Information Technologies of Randomized Machine Learning
10. Entropy Classification
11. Randomized Machine Learning in Problems of Dynamic Regression and
Prediction
Appendix A: Maximum Entropy Estimate (MEE) and Its Asymptotic Efficiency
Appendix B: Approximate Estimation of Structural Characteristics of Linear
Dynamic Regression Model (LDR)
Bibliography
1. General Concept of Machine Learning
2. Data Sources and Models Chapter
3. Dimension Reduction Methods
4. Randomized Parametric Models
5. Entropy-robust Estimation Procedures for Randomized Models and
Measurement Noises
6. Entropy-Robust Estimation Methods for Probabilities of Belonging in
Machine Learning Procedures
7. Computational Methods od Randomized Machine Learning
8. Generation Methods for Random Vectors with Given Probability Density
Functions over Compact Sets
9. Information Technologies of Randomized Machine Learning
10. Entropy Classification
11. Randomized Machine Learning in Problems of Dynamic Regression and
Prediction
Appendix A: Maximum Entropy Estimate (MEE) and Its Asymptotic Efficiency
Appendix B: Approximate Estimation of Structural Characteristics of Linear
Dynamic Regression Model (LDR)
Bibliography