La presente raccolta di problemi ed esercizi nasce dall'esperienza maturata durante il corso di Equazioni a Derivate Parziali (EDP), tenuto nell'ambito delle lauree di primo e secondo livello presso il Politecnico di Milano. Il volume è diviso in due parti; nei primi quattro capitoli l'obiettivo è l'uso di tecniche classiche, come la separazione delle variabili, il principio di massimo o le trasformate di Laplace e Fourier, per risolvere problemi di diffusione, trasporto e vibrazione. Il quinto capitolo invita a familiarizzare con i risultati di base negli spazi di Hilbert, nella teoria delle distribuzioni (o funzioni generalizzate) di Schwartz e in quella degli spazi di Sobolev più comuni. Il sesto ed ultimo capitolo riguarda la formulazione variazionale o debole dei più importanti problemi iniziali e/o al bordo per equazioni ellittiche e di evoluzione. L'introduzione ad ogni capitolo contiene una sintesi degli strumenti teorici più utilizzati. Gli esercizi sono suddivisi in due gruppi: i problemi risolti, che costituiscono dei modelli metodologici di riferimento, la cui soluzione è presentata in dettaglio; gli esercizi proposti, che il lettore è invitato ad affrontare autonomamente. Anche di questi è presentata la soluzione, a volte in forma sintetica. Il testo è rivolto prevalentemente a studenti di Ingegneria, Fisica e Matematica, ma costituisce un utile punto di riferimento anche per coloro che desiderano approfondire alcuni aspetti teorici e modellistici di questa importante disciplina.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
From the reviews:
"It collects problems and exercises regarding the theory of partial differential equations equipping this way the readers with the necessary methodological backgrounds in mathematical modeling of real-world problems. ... Of great help for the readers will be the introduction to each chapter which collects the mostly used theoretical tools. The book is highly recommendable ... ." (Dian K. Palagachev, Zentralblatt MATH, Vol. 1098 (24), 2006)
"It collects problems and exercises regarding the theory of partial differential equations equipping this way the readers with the necessary methodological backgrounds in mathematical modeling of real-world problems. ... Of great help for the readers will be the introduction to each chapter which collects the mostly used theoretical tools. The book is highly recommendable ... ." (Dian K. Palagachev, Zentralblatt MATH, Vol. 1098 (24), 2006)