Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Paul Erdös was one of the most influential mathematicians of the twentieth century, whose work in number theory, combinatorics, set theory, analysis, and other branches of mathematics has determined the development of large areas of these fields. In 1999, a conference was organized to survey his work, his contributions to mathematics, and the far-reaching impact of his work on many branches of mathematics. On the 100th anniversary of his birth, this volume undertakes the almost impossible task to describe the ways in which problems raised by him and topics initiated by him (indeed, whole…mehr
Paul Erdös was one of the most influential mathematicians of the twentieth century, whose work in number theory, combinatorics, set theory, analysis, and other branches of mathematics has determined the development of large areas of these fields. In 1999, a conference was organized to survey his work, his contributions to mathematics, and the far-reaching impact of his work on many branches of mathematics. On the 100th anniversary of his birth, this volume undertakes the almost impossible task to describe the ways in which problems raised by him and topics initiated by him (indeed, whole branches of mathematics) continue to flourish. Written by outstanding researchers in these areas, these papers include extensive surveys of classical results as well as of new developments.
László Lovász ist einer der Leiter der theoretischen Forschungsabteilung der Microsoft Corporation. Er hat 1999 den Wolf-Preis sowie den Gödel-Preis für die beste wissenschaftliche Veröffentlichung in der Informatik erhalten.
Inhaltsangabe
Contents.- Preface.- Alon, N.: Paul Erdös and Probabilistic Reasoning.- Benjamini, I.: Euclidean vs. Graph Metric.- Bollobas, B. and Riordan, O.: The Phase Transition in the Erdös–Rényi Random Graph Process.- Bourgain, J.: Around the Sum-product Phenomenon.- Breuillard, E., Green, B. and Tao, T.: Small Doubling in Groups.- Diamond, H. G.: Erdös and Multiplicative Number Theory.- Füredi, Z. and Simonovits, M.: The History of Degenerate (Bipartite) Extremal Graph Problems.- Gowers, W. T.: Erdös and Arithmetic Progressions.- Graham, R. L.: Paul Erdös and Egyptian Fractions.- Györy, K.: Perfect Powers in Products with Consecutive Terms from Arithmetic Progressions.- Komjáth, P.: Erdös’s Work on Infinite Graphs.- Kunen, K.: The Impact of Paul Erd˝os on Set Theory.- Mauldin, R. D.: Some Problems and Ideas of Erdös in Analysis and Geometry.- Montgomery, H. L.: L2 Majorant Principles.- Nesetril, J.: A Combinatorial Classic – Sparse Graphs with High Chromatic Number.- Nguyen, H. H. and Vu, V. H.: Small Ball Probability, Inverse Theorems, and Applications.- Pach, J.: The Beginnings of Geometric Graph Theory.- Pintz, J.: Paul Erdös and the Difference of Primes.- Pollack, P. and Pomerance, C.: Paul Erdös and the Rise of Statistical Thinking in Elementary Number Theory.- Rödl, V. and Schacht, M.: Extremal Results in Random Graphs.-Schinzel, A.: Erdös’s Work on the Sum of Divisors Function and on Euler’s Function.- Shalev, A.: Some Results and Problems in the Theory of Word Maps.- Tenenbaum, G.: Some of Erdös’ Unconventional Problems in Number Theory, Thirty-four Years Later.- Totik, V.: Erdös on Polynomials.- Vertesi, P.: Paul Erdös and Interpolation: Problems, Results, New Developments.
Contents.- Preface.- Alon, N.: Paul Erdös and Probabilistic Reasoning.- Benjamini, I.: Euclidean vs. Graph Metric.- Bollobas, B. and Riordan, O.: The Phase Transition in the Erdös-Rényi Random Graph Process.- Bourgain, J.: Around the Sum-product Phenomenon.- Breuillard, E., Green, B. and Tao, T.: Small Doubling in Groups.- Diamond, H. G.: Erdös and Multiplicative Number Theory.- Füredi, Z. and Simonovits, M.: The History of Degenerate (Bipartite) Extremal Graph Problems.- Gowers, W. T.: Erdös and Arithmetic Progressions.- Graham, R. L.: Paul Erdös and Egyptian Fractions.- Györy, K.: Perfect Powers in Products with Consecutive Terms from Arithmetic Progressions.- Komjáth, P.: Erdös's Work on Infinite Graphs.- Kunen, K.: The Impact of Paul Erd os on Set Theory.- Mauldin, R. D.: Some Problems and Ideas of Erdös in Analysis and Geometry.- Montgomery, H. L.: L2 Majorant Principles.- Nesetril, J.: A Combinatorial Classic - Sparse Graphs with High Chromatic Number.- Nguyen, H. H. and Vu, V. H.: Small Ball Probability, Inverse Theorems, and Applications.- Pach, J.: The Beginnings of Geometric Graph Theory.- Pintz, J.: Paul Erdös and the Difference of Primes.- Pollack, P. and Pomerance, C.: Paul Erdös and the Rise of Statistical Thinking in Elementary Number Theory.- Rödl, V. and Schacht, M.: Extremal Results in Random Graphs.-Schinzel, A.: Erdös's Work on the Sum of Divisors Function and on Euler's Function.- Shalev, A.: Some Results and Problems in the Theory of Word Maps.- Tenenbaum, G.: Some of Erdös' Unconventional Problems in Number Theory, Thirty-four Years Later.- Totik, V.: Erdös on Polynomials.- Vertesi, P.: Paul Erdös and Interpolation: Problems, Results, New Developments.
Contents.- Preface.- Alon, N.: Paul Erdös and Probabilistic Reasoning.- Benjamini, I.: Euclidean vs. Graph Metric.- Bollobas, B. and Riordan, O.: The Phase Transition in the Erdös–Rényi Random Graph Process.- Bourgain, J.: Around the Sum-product Phenomenon.- Breuillard, E., Green, B. and Tao, T.: Small Doubling in Groups.- Diamond, H. G.: Erdös and Multiplicative Number Theory.- Füredi, Z. and Simonovits, M.: The History of Degenerate (Bipartite) Extremal Graph Problems.- Gowers, W. T.: Erdös and Arithmetic Progressions.- Graham, R. L.: Paul Erdös and Egyptian Fractions.- Györy, K.: Perfect Powers in Products with Consecutive Terms from Arithmetic Progressions.- Komjáth, P.: Erdös’s Work on Infinite Graphs.- Kunen, K.: The Impact of Paul Erd˝os on Set Theory.- Mauldin, R. D.: Some Problems and Ideas of Erdös in Analysis and Geometry.- Montgomery, H. L.: L2 Majorant Principles.- Nesetril, J.: A Combinatorial Classic – Sparse Graphs with High Chromatic Number.- Nguyen, H. H. and Vu, V. H.: Small Ball Probability, Inverse Theorems, and Applications.- Pach, J.: The Beginnings of Geometric Graph Theory.- Pintz, J.: Paul Erdös and the Difference of Primes.- Pollack, P. and Pomerance, C.: Paul Erdös and the Rise of Statistical Thinking in Elementary Number Theory.- Rödl, V. and Schacht, M.: Extremal Results in Random Graphs.-Schinzel, A.: Erdös’s Work on the Sum of Divisors Function and on Euler’s Function.- Shalev, A.: Some Results and Problems in the Theory of Word Maps.- Tenenbaum, G.: Some of Erdös’ Unconventional Problems in Number Theory, Thirty-four Years Later.- Totik, V.: Erdös on Polynomials.- Vertesi, P.: Paul Erdös and Interpolation: Problems, Results, New Developments.
Contents.- Preface.- Alon, N.: Paul Erdös and Probabilistic Reasoning.- Benjamini, I.: Euclidean vs. Graph Metric.- Bollobas, B. and Riordan, O.: The Phase Transition in the Erdös-Rényi Random Graph Process.- Bourgain, J.: Around the Sum-product Phenomenon.- Breuillard, E., Green, B. and Tao, T.: Small Doubling in Groups.- Diamond, H. G.: Erdös and Multiplicative Number Theory.- Füredi, Z. and Simonovits, M.: The History of Degenerate (Bipartite) Extremal Graph Problems.- Gowers, W. T.: Erdös and Arithmetic Progressions.- Graham, R. L.: Paul Erdös and Egyptian Fractions.- Györy, K.: Perfect Powers in Products with Consecutive Terms from Arithmetic Progressions.- Komjáth, P.: Erdös's Work on Infinite Graphs.- Kunen, K.: The Impact of Paul Erd os on Set Theory.- Mauldin, R. D.: Some Problems and Ideas of Erdös in Analysis and Geometry.- Montgomery, H. L.: L2 Majorant Principles.- Nesetril, J.: A Combinatorial Classic - Sparse Graphs with High Chromatic Number.- Nguyen, H. H. and Vu, V. H.: Small Ball Probability, Inverse Theorems, and Applications.- Pach, J.: The Beginnings of Geometric Graph Theory.- Pintz, J.: Paul Erdös and the Difference of Primes.- Pollack, P. and Pomerance, C.: Paul Erdös and the Rise of Statistical Thinking in Elementary Number Theory.- Rödl, V. and Schacht, M.: Extremal Results in Random Graphs.-Schinzel, A.: Erdös's Work on the Sum of Divisors Function and on Euler's Function.- Shalev, A.: Some Results and Problems in the Theory of Word Maps.- Tenenbaum, G.: Some of Erdös' Unconventional Problems in Number Theory, Thirty-four Years Later.- Totik, V.: Erdös on Polynomials.- Vertesi, P.: Paul Erdös and Interpolation: Problems, Results, New Developments.
Rezensionen
From the book reviews:
"Paul Erdös was a very influential mathematician. ... The volume is an invaluable source for those students and researchers who are touched by Erdös' mathematics." (Péter Hajnal, Acta Scientiarum Mathematicarum (Szeged), Vol. 80 (1-2), 2014)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Shop der buecher.de GmbH & Co. KG i.I. Bürgermeister-Wegele-Str. 12, 86167 Augsburg Amtsgericht Augsburg HRA 13309