Essentials of Multiphase Flow and Transport in Porous Media (eBook, PDF)
Alle Infos zum eBook verschenken
Essentials of Multiphase Flow and Transport in Porous Media (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Learn the fundamental concepts that underlie the physics of multiphase flow and transport in porous media with the information in Essentials of Multiphase Flow in Porous Media, which demonstrates the mathematical-physical ways to express and address multiphase flow problems. Find a logical, step-by-step introduction to everything from the simple concepts to the advanced equations useful for addressing real-world problems like infiltration, groundwater contamination, and movement of non-aqueous phase liquids. Discover and apply the governing equations for application to these and other problems in light of the physics that influence system behavior.…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 5.54MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 272
- Erscheinungstermin: 24. Juli 2008
- Englisch
- ISBN-13: 9780470380796
- Artikelnr.: 37291878
- Verlag: John Wiley & Sons
- Seitenzahl: 272
- Erscheinungstermin: 24. Juli 2008
- Englisch
- ISBN-13: 9780470380796
- Artikelnr.: 37291878
1.1 Introduction.
1.2 Phases and Porousmedia.
1.3 Grain and Pore Size Distributions.
1.4 The Concept of Saturation.
1.5 The Concept of Pressure.
1.6 Surface Tension Considerations.
1.7 Concept of Concentration.
1.8 Summary.
1.9 Exercises.
2. Mass Conservation Equations.
2.1 Introduction.
2.2 Microscalemass Conservation.
2.3 Integral Forms Ofmass Conservation.
2.4 Integral Theorems.
2.4.1 Divergence Theorem.
2.4.2 Transport Theorem.
2.5 Point Forms Ofmass Conservation.
2.6 Themacroscale Perspective.
2.6.1 The Representative Elementary Volume.
2.6.2 Global and Local Coordinate Systems.
2.6.3 Macroscopic Variables.
2.6.4 Definitions Of Macroscale Quantities.
2.6.5 Summary Of Macroscale Quantities.
2.7 The Averaging Theorems.
2.7.1 Spatial Averaging Theorem.
2.7.2 Temporal Averaging Theorem.
2.8 Macroscalemass Conservation.
2.8.1 Macroscale Point Forms.
2.8.2 Integral Forms.
2.9 Applications.
2.9.1 Integral Analysis.
2.9.2 Point Analysis.
2.10 Summary.
2.11 Exercises.
3. Flow Equations.
3.1 Introduction.
3.2 Darcy'S Experiments.
3.3 Fluid Properties.
3.4 Equations of State for Fluids.
3.4.1 Mass Fraction.
3.4.2 Mass Density and Pressure.
3.4.3 Fluid Viscosity.
3.5 Hydraulic Potential.
3.5.1 Hydrostatic Force and Hydraulic Head.
3.5.2 Derivatives of Hydraulic Head.
3.6 Single Phase Fluid Flow.
3.6.1 Darcy'S Law.
3.6.2 Hydraulic Conductivity and Permeability.
3.6.3 Derivation of Groundwater Flow Equation.
3.6.4 Recapitulation of the Derivation.
3.6.5 Initial and Boundary Conditions.
3.6.6 Two-Dimensional Flow.
3.7 Two-Phase Immiscible Flow.
3.7.1 Derivation of Flowequations.
3.7.2 Observations on the Pc - Sw Relationship.
3.7.3 Formulas for The Pc - Sw Relationship.
3.7.4 Observations of the Kà Rel - Sw Relationship.
3.7.5 Formulas for the Kà Rel - Sw Relation.
3.7.6 Special Cases of Multiphase Flow.
3.8 The Buckley-Leverett Analysis.
3.8.1 Fractional Flow.
3.8.2 Derivation of the Buckley-Leverett Equation.
3.8.3 Solution of the Buckley-Leverett Equation.
3.9 Summary.
3.10 Exercises.
4. Mass Transport Equations.
4.1 Introduction.
4.2 Velocity in the Species Transport Equations.
4.2.1 Direct Approach.
4.2.2 Rigorous Approach.
4.2.3 Distribution Approach.
4.2.4 Summary.
4.3 Closure Relations for the Dispersion Vector.
4.4 Chemical Reaction Rates.
4.5 Interphase Transfer Terms.
4.5.1 Kinetic Formulation.
4.5.2 Equilibriumformulation.
4.5.3 Summary: Kinetic Vs. Equilibrium Formulations.
4.6 Initial and Boundary Conditions.
4.7 Conclusion.
4.8 Exercises.
5. Simulation.
5.1 1-D Simulation of Air-Water Flow.
5.1.1 Drainage in a Homogeneous Soil.
5.1.2 Drainage in a Heterogeneous Soil.
5.1.3 Imbibition in Homogeneous Soil.
5.2 1-D Simulation of Dnapl-Water Flow.
5.2.1 Primary Dnapl Imbibition In Homogeneous Soil.
5.2.2 Density Effect.
5.2.3 Dnapl Drainage in Homogeneous Soil.
5.2.4 Secondary Imbibition of Dnapl in Homogeneous Soil.
5.2.5 Secondary Drainage in Homogeneous Soil.
5.2.6 Primary Imbibition in Heterogeneous Soil.
5.3 2-D Simulation of Dnapl-Water Flow.
5.3.1 Dnapl Descent into a Water-Saturated Reservoir.
5.4 Simulation Of Multiphase Flow And Transport.
5.4.1 1-D Two-Phase Flow and Transport.
5.4.2 2-D Two-Phase Flow and Transport.
5.5 2-D Single-Phase Flow and Transport.
5.5.1 Base-Case.
5.5.2 Effect of Inflow.
5.5.3 Impactofwell Discharge.
5.5.4 Effect of Adsorption.
5.5.5 Effect of a Low Transmissivity Region.
5.5.6 Effect of a High Transmissivity Region.
5.5.7 Effect of Rate of Reaction.
5.6 3-D Single-Phase Flow and Transport.
5.7 2-D Three-Phase Flow.
5.8 Summary.
6. Select Symbols.
1.1 Introduction.
1.2 Phases and Porousmedia.
1.3 Grain and Pore Size Distributions.
1.4 The Concept of Saturation.
1.5 The Concept of Pressure.
1.6 Surface Tension Considerations.
1.7 Concept of Concentration.
1.8 Summary.
1.9 Exercises.
2. Mass Conservation Equations.
2.1 Introduction.
2.2 Microscalemass Conservation.
2.3 Integral Forms Ofmass Conservation.
2.4 Integral Theorems.
2.4.1 Divergence Theorem.
2.4.2 Transport Theorem.
2.5 Point Forms Ofmass Conservation.
2.6 Themacroscale Perspective.
2.6.1 The Representative Elementary Volume.
2.6.2 Global and Local Coordinate Systems.
2.6.3 Macroscopic Variables.
2.6.4 Definitions Of Macroscale Quantities.
2.6.5 Summary Of Macroscale Quantities.
2.7 The Averaging Theorems.
2.7.1 Spatial Averaging Theorem.
2.7.2 Temporal Averaging Theorem.
2.8 Macroscalemass Conservation.
2.8.1 Macroscale Point Forms.
2.8.2 Integral Forms.
2.9 Applications.
2.9.1 Integral Analysis.
2.9.2 Point Analysis.
2.10 Summary.
2.11 Exercises.
3. Flow Equations.
3.1 Introduction.
3.2 Darcy'S Experiments.
3.3 Fluid Properties.
3.4 Equations of State for Fluids.
3.4.1 Mass Fraction.
3.4.2 Mass Density and Pressure.
3.4.3 Fluid Viscosity.
3.5 Hydraulic Potential.
3.5.1 Hydrostatic Force and Hydraulic Head.
3.5.2 Derivatives of Hydraulic Head.
3.6 Single Phase Fluid Flow.
3.6.1 Darcy'S Law.
3.6.2 Hydraulic Conductivity and Permeability.
3.6.3 Derivation of Groundwater Flow Equation.
3.6.4 Recapitulation of the Derivation.
3.6.5 Initial and Boundary Conditions.
3.6.6 Two-Dimensional Flow.
3.7 Two-Phase Immiscible Flow.
3.7.1 Derivation of Flowequations.
3.7.2 Observations on the Pc - Sw Relationship.
3.7.3 Formulas for The Pc - Sw Relationship.
3.7.4 Observations of the Kà Rel - Sw Relationship.
3.7.5 Formulas for the Kà Rel - Sw Relation.
3.7.6 Special Cases of Multiphase Flow.
3.8 The Buckley-Leverett Analysis.
3.8.1 Fractional Flow.
3.8.2 Derivation of the Buckley-Leverett Equation.
3.8.3 Solution of the Buckley-Leverett Equation.
3.9 Summary.
3.10 Exercises.
4. Mass Transport Equations.
4.1 Introduction.
4.2 Velocity in the Species Transport Equations.
4.2.1 Direct Approach.
4.2.2 Rigorous Approach.
4.2.3 Distribution Approach.
4.2.4 Summary.
4.3 Closure Relations for the Dispersion Vector.
4.4 Chemical Reaction Rates.
4.5 Interphase Transfer Terms.
4.5.1 Kinetic Formulation.
4.5.2 Equilibriumformulation.
4.5.3 Summary: Kinetic Vs. Equilibrium Formulations.
4.6 Initial and Boundary Conditions.
4.7 Conclusion.
4.8 Exercises.
5. Simulation.
5.1 1-D Simulation of Air-Water Flow.
5.1.1 Drainage in a Homogeneous Soil.
5.1.2 Drainage in a Heterogeneous Soil.
5.1.3 Imbibition in Homogeneous Soil.
5.2 1-D Simulation of Dnapl-Water Flow.
5.2.1 Primary Dnapl Imbibition In Homogeneous Soil.
5.2.2 Density Effect.
5.2.3 Dnapl Drainage in Homogeneous Soil.
5.2.4 Secondary Imbibition of Dnapl in Homogeneous Soil.
5.2.5 Secondary Drainage in Homogeneous Soil.
5.2.6 Primary Imbibition in Heterogeneous Soil.
5.3 2-D Simulation of Dnapl-Water Flow.
5.3.1 Dnapl Descent into a Water-Saturated Reservoir.
5.4 Simulation Of Multiphase Flow And Transport.
5.4.1 1-D Two-Phase Flow and Transport.
5.4.2 2-D Two-Phase Flow and Transport.
5.5 2-D Single-Phase Flow and Transport.
5.5.1 Base-Case.
5.5.2 Effect of Inflow.
5.5.3 Impactofwell Discharge.
5.5.4 Effect of Adsorption.
5.5.5 Effect of a Low Transmissivity Region.
5.5.6 Effect of a High Transmissivity Region.
5.5.7 Effect of Rate of Reaction.
5.6 3-D Single-Phase Flow and Transport.
5.7 2-D Three-Phase Flow.
5.8 Summary.
6. Select Symbols.