59,95 €
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
30 °P sammeln
59,95 €
59,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
30 °P sammeln
Als Download kaufen
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
30 °P sammeln
Jetzt verschenken
59,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
30 °P sammeln
  • Format: ePub

Presents the topic of assessing and quantifying the climate change and its impacts from a multi-faceted perspective of ecosystem, human health, and social and infrastructure resilience, given through a lens of statistical and data sciences.

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 11.77MB
Produktbeschreibung
Presents the topic of assessing and quantifying the climate change and its impacts from a multi-faceted perspective of ecosystem, human health, and social and infrastructure resilience, given through a lens of statistical and data sciences.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
The book is an interdisciplinary initiative of statisticians, climatologists, ecologists and oceanographers whose research addresses development and implementation of analytical methodology for assessing climate change impacts. The team includes statisticians V. Lyubchich and Y. R. Gel (statistical and machine learning methods for quantification of the climate-induced risk), climatologist K. H. Kilbourne (paleoclimatology, geochemistry, assessment of the causes of climate variability), fisheries scientist T. J. Miller (effects of ocean acidification on blue crab, recruitment issues in menhaden and striped bass), disaster expert A. B. Smith (analysis of economic and societal impacts of extreme events and natural hazards), and research scientist in food-water-energy nexus N. K. Newlands (sustainability, precision agriculture and risk analysis using machine learning and integrated modeling).