73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
Jetzt verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
  • Format: PDF

¿This engineering practice Guide, based on the DETACT-QS program, describes a model for predicting the response time of ceiling-mounted heat detectors/sprinklers and smoke detectors, installed under large unobstructed ceilings, for fires with user-defined, time-dependent heat release rate curves. The Guide provides information on the technical features, theoretical basis, assumptions, limitations, and sensitivities as well as guidance on the use of DETACT-QS. Evaluation is based on comparing predictions from DETACT-QS with results from full-scale fire experiments conducted in compartments with…mehr

Produktbeschreibung
¿This engineering practice Guide, based on the DETACT-QS program, describes a model for predicting the response time of ceiling-mounted heat detectors/sprinklers and smoke detectors, installed under large unobstructed ceilings, for fires with user-defined, time-dependent heat release rate curves. The Guide provides information on the technical features, theoretical basis, assumptions, limitations, and sensitivities as well as guidance on the use of DETACT-QS. Evaluation is based on comparing predictions from DETACT-QS with results from full-scale fire experiments conducted in compartments with ceiling heights ranging from 2.44 m (8 ft) to 12.2 m (40 ft) and peak fire heat release rates ranging from 150 kW to 3.8 MW. Use of this model with building geometries or fire characteristics other than those used in this evaluation may require further evaluation or testing.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
The Society of Fire Protection Engineers (SFPE) is the professional society representing those practicing the field of fire protection engineering. The Society has over 4,600 members and 111 chapters, including 23 student chapters worldwide.

The purpose of SFPE is to advance the science and practice of fire protection engineering and its allied fields, to maintain a high ethical standard among its members and to foster fire protection engineering education.