38,95 €
38,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
19 °P sammeln
38,95 €
38,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
19 °P sammeln
Als Download kaufen
38,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
19 °P sammeln
Jetzt verschenken
38,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
19 °P sammeln
  • Format: PDF

This 2006 work began with the author's exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium are relinquished. The finite deformation theory of elasticity turns out to be a natural vehicle for the study of phase transitions in solids where thermal effects can be neglected. This text will be of interest to those interested in the development and application of continuum-mechanical models that describe the macroscopic response of materials capable…mehr

  • Geräte: PC
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 2.38MB
  • FamilySharing(5)
Produktbeschreibung
This 2006 work began with the author's exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium are relinquished. The finite deformation theory of elasticity turns out to be a natural vehicle for the study of phase transitions in solids where thermal effects can be neglected. This text will be of interest to those interested in the development and application of continuum-mechanical models that describe the macroscopic response of materials capable of undergoing stress- or temperature-induced transitions between two solid phases. The focus is on the evolution of phase transitions which may be either dynamic or quasi-static, controlled by a kinetic relation which in the framework of classical thermomechanics represents information that is supplementary to the usual balance principles and constitutive laws of conventional theory.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Rohan Abeyaratne is the Quentin Berg Professor and Department Head of Mechanical Engineering at the Massachusetts Institute of Technology. Among his many honors are: E.O.E. Pereira Gold Medal, 1975; Den Hartog Distinguished Educator, 1995; Fellow, American Academy of Mechanics; 1996 Fellow, ASME, 1998; MacVicar Faculty Fellow, 2000. His research focuses include Continuum Mechanics; Finite Elasticity and Plasticity; Material Instability and Non-Equilibrium Behavior of Solids; Stress-Induced Phase Transformations in Solids, and Cavitation.
Prof. James K. Knowles is the William R. Kenan, Jr. Professor of Applied Mechanics. He received his Ph.D. from the Massachusetts Institute of Technology, D.Sc.h.c., National University of Ireland, and has received the following awards: Goodwin Medal for Effective Teaching, MIT (1955), Award of the Associated Students of Caltech for Excellence in Teaching (1984, 1985), Award of the Caltech Graduate Student Council for Exceptional Teaching (1993); Fellow, American Academy of Mechanics; Fellow, American Society of Mechanical Engineers; President of the American Academy of Mechanics, 1985-86; Eringen Medal, Society of Engineering Science (1991). He is the author of Linear Vector Spaces and Cartesian Tensors (1997) and numerous articles in refereed journals.