Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This 2006 work began with the author's exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium are relinquished. The finite deformation theory of elasticity turns out to be a natural vehicle for the study of phase transitions in solids where thermal effects can be neglected. This text will be of interest to those interested in the development and application of continuum-mechanical models that describe the macroscopic response of materials capable…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 2.38MB
- FamilySharing(5)
- Amit DuttaQuantum Phase Transitions in Transverse Field Spin Models (eBook, PDF)96,95 €
- Alexander V. YakubovichTheory of Phase Transitions in Polypeptides and Proteins (eBook, PDF)73,95 €
- Alexander K. HartmannPhase Transitions in Combinatorial Optimization Problems (eBook, PDF)120,99 €
- Phase Transitions - 1973 (eBook, PDF)40,95 €
- Intersubband Transitions in Quantum Wells: Physics and Device Applications (eBook, PDF)163,95 €
- Intersubband Transitions in Quantum Wells: Physics and Device Applications II (eBook, PDF)163,95 €
- William C. ReynoldsThermodynamics (eBook, PDF)90,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Cambridge University Press
- Erscheinungstermin: 8. Mai 2006
- Englisch
- ISBN-13: 9780511166396
- Artikelnr.: 38209156
- Verlag: Cambridge University Press
- Erscheinungstermin: 8. Mai 2006
- Englisch
- ISBN-13: 9780511166396
- Artikelnr.: 38209156
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Prof. James K. Knowles is the William R. Kenan, Jr. Professor of Applied Mechanics. He received his Ph.D. from the Massachusetts Institute of Technology, D.Sc.h.c., National University of Ireland, and has received the following awards: Goodwin Medal for Effective Teaching, MIT (1955), Award of the Associated Students of Caltech for Excellence in Teaching (1984, 1985), Award of the Caltech Graduate Student Council for Exceptional Teaching (1993); Fellow, American Academy of Mechanics; Fellow, American Society of Mechanical Engineers; President of the American Academy of Mechanics, 1985-86; Eringen Medal, Society of Engineering Science (1991). He is the author of Linear Vector Spaces and Cartesian Tensors (1997) and numerous articles in refereed journals.
2. Some experiments
3. Continuum mechanics
4. Quasilinear systems
5. Outline of monograph
Part II. Two-Well Potentials, Governing Equations and Energetics: 1. Introduction
2. Two-phase nonlinearly elastic materials
3. Field equations and jump conditions
4. Energetics of motion, driving force and dissipation inequality
Part III. Equilibrium Phase Mixtures and Quasistatic Processes: 1. Introduction
2. Equilibrium states
3. Variational theory of equilibrium mixtures of phases
4. Quasistatic processes
5. Nucleation and kinetics
6. Constant elongation rate processes
7. Hysteresis
Part IV. Impact-Induced Transitions in Two-Phase Elastic Materials: 1. Introduction
2. The impact problem for trilinear two-phase materials
3. Scale-invariant solutions of the impact problem
4. Nucleation and kinetics
5. Comparison with experiment
6. Other types of kinetic relations
7. Related work
Part V. Multiple-Well Free Energy Potentials: 1. Introduction
2. Helmholtz free energy potential
3. Potential energy function and the effect of stress
4. Example 1: the van der Waals fluid
5. Example 2: two-phase martensitic material with cubic and tetragonal phases
Part VI. The Continuum Theory of Driving Force: 1. Introduction
2. Balance laws, field equations and jump conditions
3. The second law of thermodynamics and the driving force
Part VII. Thermoelastic Materials: 1. Introduction
2. The thermoelastic constitutive law
3. Stability of a thermoelastic material
4. A one-dimensional special case: uniaxial strain
Part VIII. Kinetics and Nucleation: 1. Introduction
2. Nonequilibrium processes, thermodynamic fluxes and forces, kinetic relation
3. Phenomenological examples of kinetic relations
4. Micromechanically-based examples of kinetic relations
5. Nucleation
Part IX. Models for Two-Phase Thermoelastic Materials in One Dimension: 1. Preliminaries
2. Materials of Mie-Gruneisen type
3. Two-phase Mie-Gruneisen materials
Part X. Quasistatic Hysteresis in Two-Phase Thermoelastic Tensile Bars: 1. Preliminaries
2. Thermomechanical equilibrium states for a two-phase material
3. Quasistatic processes
4. Trilinear thermoelastic material
5. Stress cycles at constant temperature
6. Temperature cycles at constant stress
7. The shape-memory cycle
8. The experiments of Shaw and Kyriakides
9. Slow thermomechanical processes
Part XI. Dynamics of Phase Transitions in Uniaxially Strained Thermoelastic Solids: 1. Introduction
2. Uniaxial strain in adiabatic thermoelasticity
3. The impact problem
Part XII. Statics: Geometric Compatibility: 1. Preliminaries
2. Examples
Part XIII. Dynamics: Impact-Induced Transition in a CuA1Nl Single Crystal: 1. Introduction
2. Preliminaries
3. Impact without phase transformation
4. Impact with phase transformation
5. Application to austenite-B1 martensite transformation in CuA1Nl
Part XIV. Quasistatics: Kinetics of Martensitic Twinning: 1. Introduction
2. The material and loading device
3. Observations
4. The model
5. The energy of the system
6. The effect of the transition layers: further observations
7. The effect of the transition layers: further modeling
8. Kinetics.
2. Some experiments
3. Continuum mechanics
4. Quasilinear systems
5. Outline of monograph
Part II. Two-Well Potentials, Governing Equations and Energetics: 1. Introduction
2. Two-phase nonlinearly elastic materials
3. Field equations and jump conditions
4. Energetics of motion, driving force and dissipation inequality
Part III. Equilibrium Phase Mixtures and Quasistatic Processes: 1. Introduction
2. Equilibrium states
3. Variational theory of equilibrium mixtures of phases
4. Quasistatic processes
5. Nucleation and kinetics
6. Constant elongation rate processes
7. Hysteresis
Part IV. Impact-Induced Transitions in Two-Phase Elastic Materials: 1. Introduction
2. The impact problem for trilinear two-phase materials
3. Scale-invariant solutions of the impact problem
4. Nucleation and kinetics
5. Comparison with experiment
6. Other types of kinetic relations
7. Related work
Part V. Multiple-Well Free Energy Potentials: 1. Introduction
2. Helmholtz free energy potential
3. Potential energy function and the effect of stress
4. Example 1: the van der Waals fluid
5. Example 2: two-phase martensitic material with cubic and tetragonal phases
Part VI. The Continuum Theory of Driving Force: 1. Introduction
2. Balance laws, field equations and jump conditions
3. The second law of thermodynamics and the driving force
Part VII. Thermoelastic Materials: 1. Introduction
2. The thermoelastic constitutive law
3. Stability of a thermoelastic material
4. A one-dimensional special case: uniaxial strain
Part VIII. Kinetics and Nucleation: 1. Introduction
2. Nonequilibrium processes, thermodynamic fluxes and forces, kinetic relation
3. Phenomenological examples of kinetic relations
4. Micromechanically-based examples of kinetic relations
5. Nucleation
Part IX. Models for Two-Phase Thermoelastic Materials in One Dimension: 1. Preliminaries
2. Materials of Mie-Gruneisen type
3. Two-phase Mie-Gruneisen materials
Part X. Quasistatic Hysteresis in Two-Phase Thermoelastic Tensile Bars: 1. Preliminaries
2. Thermomechanical equilibrium states for a two-phase material
3. Quasistatic processes
4. Trilinear thermoelastic material
5. Stress cycles at constant temperature
6. Temperature cycles at constant stress
7. The shape-memory cycle
8. The experiments of Shaw and Kyriakides
9. Slow thermomechanical processes
Part XI. Dynamics of Phase Transitions in Uniaxially Strained Thermoelastic Solids: 1. Introduction
2. Uniaxial strain in adiabatic thermoelasticity
3. The impact problem
Part XII. Statics: Geometric Compatibility: 1. Preliminaries
2. Examples
Part XIII. Dynamics: Impact-Induced Transition in a CuA1Nl Single Crystal: 1. Introduction
2. Preliminaries
3. Impact without phase transformation
4. Impact with phase transformation
5. Application to austenite-B1 martensite transformation in CuA1Nl
Part XIV. Quasistatics: Kinetics of Martensitic Twinning: 1. Introduction
2. The material and loading device
3. Observations
4. The model
5. The energy of the system
6. The effect of the transition layers: further observations
7. The effect of the transition layers: further modeling
8. Kinetics.