43,95 €
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
22 °P sammeln
43,95 €
Als Download kaufen
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
22 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
22 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 37.13MB
Andere Kunden interessierten sich auch für
- Gregory L. NaberTopology, Geometry and Gauge fields (eBook, PDF)69,95 €
- Maria MoszynskaSelected Topics in Convex Geometry (eBook, PDF)40,95 €
- Jiri MatousekLectures on Discrete Geometry (eBook, PDF)65,95 €
- -22%11Georg ScheffersLehrbuch der Darstellenden Geometrie (eBook, PDF)42,99 €
- Michel DemazureBifurcations and Catastrophes (eBook, PDF)40,95 €
- -20%11H. MüllerDie Elementar-Planimetrie (eBook, PDF)39,99 €
- Jean GallierGeometric Methods and Applications (eBook, PDF)65,95 €
-
-
-
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 423
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642592379
- Artikelnr.: 53144640
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I. Convexity.- 1 Convex sets.- 2 Faces and supporting hyperplanes.- 3 Polarity.- 4 Direct sum decompositions.- 5 The lower semicontinuity of the operator "exp".- 6 Convex cones.- 7 The Farkas Lemma and its generalization.- 8 Separable systems of convex cones.- II. d-Convexity in normed spaces.- 9 The definition of d-convex sets.- 10 Support properties of d-convex sets.- 11 Properties of d-convex flats.- 12 The join of normed spaces.- 13 Separability of d-convex sets.- 14 The Helly dimension of a set family.- 15 d-Star-shaped sets.- III. H-convexity.- 16 The functional md for vector systems.- 17 The ?-displacement Theorem.- 18 Lower semicontinuity of the functional md.- 19 The definition of H-convex sets.- 20 Upper semicontinuity of the H-convex hull.- 21 Supporting cones of H-convex bodies.- 22 The Helly Theorem for H-convex sets.- 23 Some applications of H-convexity.- 24 Some remarks on connection between d-convexity and H-convexity.- IV. The Szökefalvi-Nagy Problem.- 25 The Theorem of Szökefalvi-Nagy and its generalization.- 26 Description of vector systems with md H = 2 that are not one-sided.- 27 The 2-systems without particular vectors.- 28 The 2-system with particular vectors.- 29 The compact, convex bodies with md M = 2.- 30 Centrally symmetric bodies.- V. Borsuk's partition problem.- 31 Formulation of the problem and a survey of results.- 32 Bodies of constant width in Euclidean and normed spaces.- 33 Borsuk's problem in normed spaces.- VI. Homothetic covering and illumination.- 34 The main problem and a survey of results.- 35 The hypothesis of Gohberg-Markus-Hadwiger.- 36 The infinite values of the functional b, b2032;, c, c2032;,.- 37 Inner illumination of convex bodies.- 38Estimates for the value of the functional p(K).- VII. Combinatorial geometry of belt bodies.- 39 The integral respresentation of zonoids.- 40 Belt vectors of a compact, convex body.- 41 Definition of belt bodies.- 42 Solution of the illumination problem for belt bodies.- 43 Solution of the Szökefalvi-Nagy problem for belt bodies.- 44 Minimal fixing systems.- VIII. Some research problems.- Author Index.- List of Symbols.
I. Convexity.- 1 Convex sets.- 2 Faces and supporting hyperplanes.- 3 Polarity.- 4 Direct sum decompositions.- 5 The lower semicontinuity of the operator "exp".- 6 Convex cones.- 7 The Farkas Lemma and its generalization.- 8 Separable systems of convex cones.- II. d-Convexity in normed spaces.- 9 The definition of d-convex sets.- 10 Support properties of d-convex sets.- 11 Properties of d-convex flats.- 12 The join of normed spaces.- 13 Separability of d-convex sets.- 14 The Helly dimension of a set family.- 15 d-Star-shaped sets.- III. H-convexity.- 16 The functional md for vector systems.- 17 The ?-displacement Theorem.- 18 Lower semicontinuity of the functional md.- 19 The definition of H-convex sets.- 20 Upper semicontinuity of the H-convex hull.- 21 Supporting cones of H-convex bodies.- 22 The Helly Theorem for H-convex sets.- 23 Some applications of H-convexity.- 24 Some remarks on connection between d-convexity and H-convexity.- IV. The Szökefalvi-Nagy Problem.- 25 The Theorem of Szökefalvi-Nagy and its generalization.- 26 Description of vector systems with md H = 2 that are not one-sided.- 27 The 2-systems without particular vectors.- 28 The 2-system with particular vectors.- 29 The compact, convex bodies with md M = 2.- 30 Centrally symmetric bodies.- V. Borsuk's partition problem.- 31 Formulation of the problem and a survey of results.- 32 Bodies of constant width in Euclidean and normed spaces.- 33 Borsuk's problem in normed spaces.- VI. Homothetic covering and illumination.- 34 The main problem and a survey of results.- 35 The hypothesis of Gohberg-Markus-Hadwiger.- 36 The infinite values of the functional b, b2032;, c, c2032;,.- 37 Inner illumination of convex bodies.- 38Estimates for the value of the functional p(K).- VII. Combinatorial geometry of belt bodies.- 39 The integral respresentation of zonoids.- 40 Belt vectors of a compact, convex body.- 41 Definition of belt bodies.- 42 Solution of the illumination problem for belt bodies.- 43 Solution of the Szökefalvi-Nagy problem for belt bodies.- 44 Minimal fixing systems.- VIII. Some research problems.- Author Index.- List of Symbols.