82,95 €
82,95 €
inkl. MwSt.
Sofort per Download lieferbar
82,95 €
82,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
82,95 €
inkl. MwSt.
Sofort per Download lieferbar
Jetzt verschenken
82,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
  • Format: ePub

While discrete mathematics rapidly becomes a standard requirement in undergraduate mathematics programs, algebraic computing is now the computational tool of choice. This book merges these two trends. It introduces the foundations of discrete mathematics and assuming no previous knowledge of computing, gradually develops basic computational skills using MAPLE. The author's approach is to expose readers to a large number of concrete computational examples, encouraging them to isolate the general from the particular, to synthesize results, formulate conjectures, and to attempt rigorous proofs.…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 7.81MB
Produktbeschreibung
While discrete mathematics rapidly becomes a standard requirement in undergraduate mathematics programs, algebraic computing is now the computational tool of choice. This book merges these two trends. It introduces the foundations of discrete mathematics and assuming no previous knowledge of computing, gradually develops basic computational skills using MAPLE. The author's approach is to expose readers to a large number of concrete computational examples, encouraging them to isolate the general from the particular, to synthesize results, formulate conjectures, and to attempt rigorous proofs. MAPLE worksheets and solutions to selected exercises are available on the Internet.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Franco Vivaldi is Professor of Applied Mathematics at Queen Mary University of London. His research interests include maps over arithmetical sets (finite fields, p-adic and algebraic numbers), piecewise isometries, space discretization and round-off errors.