Explainable Artificial Intelligence for Intelligent Transportation Systems (eBook, ePUB)
Redaktion: Adadi, Amina; Bouhoute, Afaf
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Explainable Artificial Intelligence for Intelligent Transportation Systems (eBook, ePUB)
Redaktion: Adadi, Amina; Bouhoute, Afaf
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Explainable AI methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 7.39MB
Andere Kunden interessierten sich auch für
- Explainable Artificial Intelligence for Intelligent Transportation Systems (eBook, PDF)52,95 €
- Guoqi XieFunctional Safety for Embedded Systems (eBook, ePUB)52,95 €
- Ruqiang YanDeep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems (eBook, ePUB)80,95 €
- Wael A. AltabeyModeling and Simulation of Intelligent Transportation Systems (eBook, ePUB)109,95 €
- Secure and Digitalized Future Mobility (eBook, ePUB)48,95 €
- Leonardo Di G. SigalottiAir Turbulence and its Methods of Detection (eBook, ePUB)48,95 €
- R. Glenn WrightUnmanned and Autonomous Ships (eBook, ePUB)47,95 €
-
-
-
Explainable AI methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 286
- Erscheinungstermin: 20. Oktober 2023
- Englisch
- ISBN-13: 9781000968477
- Artikelnr.: 69019681
- Verlag: Taylor & Francis
- Seitenzahl: 286
- Erscheinungstermin: 20. Oktober 2023
- Englisch
- ISBN-13: 9781000968477
- Artikelnr.: 69019681
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Amina Adadi is an assistant professor of Computer Science at Moulay Ismail University, Morocco. She has published several papers including refereed IEEE/Springer/Elsevier journal articles, conference papers, and book chapters. She has served and continues to serve on executive and technical program committees of numerous international conferences such as IEEE IRASET, ESETI, and WITS. Her research interests include Explainable AI, Data Efficient Models: Data Augmentation, Few-shot learning, Self-supervised learning, Transfer Learning, Blockchain, and Smart Contracts. Afaf Bouhoute holds a Ph.D., a Master's degree in information systems, networking, and multimedia, and a bachelor's degree in computer science, all from the faculty of science, Sidi Mohamed Ben Abdellah University, Fez, Morocco. She regularly serves in the technical and program committees of numerous international conferences such as ISCV, WINCOM, ICECOCS, and ICDS. She also served as a co-chair of the First International Workshop on Cooperative Vehicle Networking (CVNET 2020), which was organized in conjunction with EAI ADHOCNETS 2020. Her research interests span different techniques and algorithms for modeling and analysis of driving behavior, with a focus on their application in cooperative intelligent transportation systems.
Section I Towards explainable ITS. 1. Explainable AI for Intelligent Transportation Systems: Are we there yet? Amina Adadi and Afaf Bouhoute. Section II Interpretable methods for ITS applications. 2. Towards Safe
Explainable
and Regulated Autonomous Driving Shahin Atakishiyev
Mohammad Salameh
Hengshuai Yao
and Randy Goebel. 3. Explainable Machine Learning Method for Predicting Road Traffic Accident Injury Severity in Addis Ababa city based on a New Graph Feature Selection Technique Yassine Akhiat
Younes Bouchlaghem
Ahmed Zinedine
and Mohamed Chahhou. 4. COVID-19 pandemic effects on traffic crash patterns and in- juries in Barcelona
Spain: An interpretable approach Ahmad Aiash and Francesc Robuste. 5. Advances in Explainable Reinforcement Learning: an Intelligent Transportation Systems perspective Rudy Milani
Maximilian Moll and Stefan Pickl. 6. Road Traffic Data Collection: Handling Missing Data Abdelilah Mbarek
Mouna Jiber
Ali Yahyaouy
and Abdelouahed Sabri. 7. Explainability of surrogate models for traffic signal control Pawel Gora
Dominik Bogucki
and M. Latif Bolum. 8. Intelligent Techniques and Explainable Artificial Intelligence for Vessel Traffic Service: A Survey Meng Joo Er
Huibin Gong
Chuang Ma
Wenxiao Gao. 9. An Explainable Model for Detection and Recognition of Traffic Road Signs Anass Barodi
Abdelkarim Zemmouri
Abderrahim Bajit
Mohammed Benbrahim
and Ahmed Tamtaoui. 10. An Interpretable Detection of Transportation Mode Consider- ing GPS
Spatial
and Contextual Data based on Ensemble Machine Learning Sajjad Sowlati
Rahim Ali Abbaspour
and Chehreghan. 11. Blockchain and Explainable AI for Trustworthy Autonomous Vehicles Ouassima Markouh
Amina Adadi
Mohammed Berrada. Section III Ethical
social and legal implications of XAI in ITS. 12. Ethical Decision-Making Under Different Perspective-Taking Scenarios and Demographic Characteristics: The Case of Autonomous Vehicles Kareem Othman.
Explainable
and Regulated Autonomous Driving Shahin Atakishiyev
Mohammad Salameh
Hengshuai Yao
and Randy Goebel. 3. Explainable Machine Learning Method for Predicting Road Traffic Accident Injury Severity in Addis Ababa city based on a New Graph Feature Selection Technique Yassine Akhiat
Younes Bouchlaghem
Ahmed Zinedine
and Mohamed Chahhou. 4. COVID-19 pandemic effects on traffic crash patterns and in- juries in Barcelona
Spain: An interpretable approach Ahmad Aiash and Francesc Robuste. 5. Advances in Explainable Reinforcement Learning: an Intelligent Transportation Systems perspective Rudy Milani
Maximilian Moll and Stefan Pickl. 6. Road Traffic Data Collection: Handling Missing Data Abdelilah Mbarek
Mouna Jiber
Ali Yahyaouy
and Abdelouahed Sabri. 7. Explainability of surrogate models for traffic signal control Pawel Gora
Dominik Bogucki
and M. Latif Bolum. 8. Intelligent Techniques and Explainable Artificial Intelligence for Vessel Traffic Service: A Survey Meng Joo Er
Huibin Gong
Chuang Ma
Wenxiao Gao. 9. An Explainable Model for Detection and Recognition of Traffic Road Signs Anass Barodi
Abdelkarim Zemmouri
Abderrahim Bajit
Mohammed Benbrahim
and Ahmed Tamtaoui. 10. An Interpretable Detection of Transportation Mode Consider- ing GPS
Spatial
and Contextual Data based on Ensemble Machine Learning Sajjad Sowlati
Rahim Ali Abbaspour
and Chehreghan. 11. Blockchain and Explainable AI for Trustworthy Autonomous Vehicles Ouassima Markouh
Amina Adadi
Mohammed Berrada. Section III Ethical
social and legal implications of XAI in ITS. 12. Ethical Decision-Making Under Different Perspective-Taking Scenarios and Demographic Characteristics: The Case of Autonomous Vehicles Kareem Othman.
Section I Towards explainable ITS. 1. Explainable AI for Intelligent Transportation Systems: Are we there yet? Amina Adadi and Afaf Bouhoute. Section II Interpretable methods for ITS applications. 2. Towards Safe
Explainable
and Regulated Autonomous Driving Shahin Atakishiyev
Mohammad Salameh
Hengshuai Yao
and Randy Goebel. 3. Explainable Machine Learning Method for Predicting Road Traffic Accident Injury Severity in Addis Ababa city based on a New Graph Feature Selection Technique Yassine Akhiat
Younes Bouchlaghem
Ahmed Zinedine
and Mohamed Chahhou. 4. COVID-19 pandemic effects on traffic crash patterns and in- juries in Barcelona
Spain: An interpretable approach Ahmad Aiash and Francesc Robuste. 5. Advances in Explainable Reinforcement Learning: an Intelligent Transportation Systems perspective Rudy Milani
Maximilian Moll and Stefan Pickl. 6. Road Traffic Data Collection: Handling Missing Data Abdelilah Mbarek
Mouna Jiber
Ali Yahyaouy
and Abdelouahed Sabri. 7. Explainability of surrogate models for traffic signal control Pawel Gora
Dominik Bogucki
and M. Latif Bolum. 8. Intelligent Techniques and Explainable Artificial Intelligence for Vessel Traffic Service: A Survey Meng Joo Er
Huibin Gong
Chuang Ma
Wenxiao Gao. 9. An Explainable Model for Detection and Recognition of Traffic Road Signs Anass Barodi
Abdelkarim Zemmouri
Abderrahim Bajit
Mohammed Benbrahim
and Ahmed Tamtaoui. 10. An Interpretable Detection of Transportation Mode Consider- ing GPS
Spatial
and Contextual Data based on Ensemble Machine Learning Sajjad Sowlati
Rahim Ali Abbaspour
and Chehreghan. 11. Blockchain and Explainable AI for Trustworthy Autonomous Vehicles Ouassima Markouh
Amina Adadi
Mohammed Berrada. Section III Ethical
social and legal implications of XAI in ITS. 12. Ethical Decision-Making Under Different Perspective-Taking Scenarios and Demographic Characteristics: The Case of Autonomous Vehicles Kareem Othman.
Explainable
and Regulated Autonomous Driving Shahin Atakishiyev
Mohammad Salameh
Hengshuai Yao
and Randy Goebel. 3. Explainable Machine Learning Method for Predicting Road Traffic Accident Injury Severity in Addis Ababa city based on a New Graph Feature Selection Technique Yassine Akhiat
Younes Bouchlaghem
Ahmed Zinedine
and Mohamed Chahhou. 4. COVID-19 pandemic effects on traffic crash patterns and in- juries in Barcelona
Spain: An interpretable approach Ahmad Aiash and Francesc Robuste. 5. Advances in Explainable Reinforcement Learning: an Intelligent Transportation Systems perspective Rudy Milani
Maximilian Moll and Stefan Pickl. 6. Road Traffic Data Collection: Handling Missing Data Abdelilah Mbarek
Mouna Jiber
Ali Yahyaouy
and Abdelouahed Sabri. 7. Explainability of surrogate models for traffic signal control Pawel Gora
Dominik Bogucki
and M. Latif Bolum. 8. Intelligent Techniques and Explainable Artificial Intelligence for Vessel Traffic Service: A Survey Meng Joo Er
Huibin Gong
Chuang Ma
Wenxiao Gao. 9. An Explainable Model for Detection and Recognition of Traffic Road Signs Anass Barodi
Abdelkarim Zemmouri
Abderrahim Bajit
Mohammed Benbrahim
and Ahmed Tamtaoui. 10. An Interpretable Detection of Transportation Mode Consider- ing GPS
Spatial
and Contextual Data based on Ensemble Machine Learning Sajjad Sowlati
Rahim Ali Abbaspour
and Chehreghan. 11. Blockchain and Explainable AI for Trustworthy Autonomous Vehicles Ouassima Markouh
Amina Adadi
Mohammed Berrada. Section III Ethical
social and legal implications of XAI in ITS. 12. Ethical Decision-Making Under Different Perspective-Taking Scenarios and Demographic Characteristics: The Case of Autonomous Vehicles Kareem Othman.