Explainable Artificial Intelligence (XAI) in Healthcare (eBook, ePUB)
Redaktion: Kose, Utku; Saucedo, Jose Antonio Marmolejo; Chen, Xi; Sengoz, Nilgun
110,95 €
110,95 €
inkl. MwSt.
Sofort per Download lieferbar
55 °P sammeln
110,95 €
Als Download kaufen
110,95 €
inkl. MwSt.
Sofort per Download lieferbar
55 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
110,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
55 °P sammeln
Explainable Artificial Intelligence (XAI) in Healthcare (eBook, ePUB)
Redaktion: Kose, Utku; Saucedo, Jose Antonio Marmolejo; Chen, Xi; Sengoz, Nilgun
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book highlights the use of explainable artificial intelligence (XAI) for healthcare problems, in order to improve trustworthiness, performance and sustainability levels in the context of applications.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 8.13MB
Andere Kunden interessierten sich auch für
- Explainable Artificial Intelligence (XAI) in Healthcare (eBook, PDF)110,95 €
- Smart Distributed Embedded Systems for Healthcare Applications (eBook, ePUB)52,95 €
- Lia MorraArtificial Intelligence in Medical Imaging (eBook, ePUB)48,95 €
- Explainable Artificial Intelligence for Biomedical Applications (eBook, ePUB)120,95 €
- Shahab D. MohagheghArtificial Intelligence for Science and Engineering Applications (eBook, ePUB)75,95 €
- Smart Distributed Embedded Systems for Healthcare Applications (eBook, PDF)52,95 €
- Deep Learning in Computer Vision (eBook, ePUB)42,95 €
-
-
-
This book highlights the use of explainable artificial intelligence (XAI) for healthcare problems, in order to improve trustworthiness, performance and sustainability levels in the context of applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 256
- Erscheinungstermin: 23. April 2024
- Englisch
- ISBN-13: 9781040020456
- Artikelnr.: 70335255
- Verlag: Taylor & Francis
- Seitenzahl: 256
- Erscheinungstermin: 23. April 2024
- Englisch
- ISBN-13: 9781040020456
- Artikelnr.: 70335255
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Utku Kose is an Associate Professor in Suleyman Demirel University, Turkey, and Visiting Researcher in University of North Dakota, USA. His research interests include artificial intelligence, machine ethics, artificial intelligence safety, biomedical applications, optimization, the chaos theory, distance education, e-learning, computer education, and computer science. Nilgun Sengoz is an Assistant Professor in Burdur Mehmet Akif University, Turkey. Her areas of interest are artificial intelligence, machine learning and deep learning, medical image processing and also human computer interaction. Xi Chen is a Senior Software Engineer in Meta, Burlingame, CA, USA. He graduated from the University of Kentucky focusing in bioinformatics PhD and Statistics MA. He is passionate about Big Data, Machine Learning and AI research, with strong interpersonal skills, adept at working in teams and successfully delivering projects. Jose Antonio Marmolejo is a Professor at National Autonomous University of Mexico, Mexico. His research is on operations research, largescale optimization techniques, computational techniques, analytical methods for planning, operations, and control of electric energy and logistic systems, sustainable supply chain design and digital twins in supply chains.
Chapter 1: Artificial Intelligence for Healthcare Applications: A Review. Chapter 2: Open Problems of XAI Especially for Medical Domain. Chapter 3: Explainable AI in Biomedical Applications: Vision, Framework, Anxieties, and Challenges. Chapter 4: XAI in Drug Discovery. Chapter 5: The Use of Explainable Artificial Intelligence in Medical Image Processing: A Research Study. Chapter 6: Current Progress and Open Research Challenges for XAI in Deep Learning Across Medical Imaging. Chapter 7: From Black Boxes to Transparent Machines: The Quest for Explainable AI. Chapter 8: XAI and Disease Diagnosis. Chapter 9: Explainability and the Role of Digital Twins in Personalized Medicine and Healthcare Optimization. Chapter 10: XAI for Trustworthiness in Medical Tourism. Chapter 11: XAI for Advancements in Drug Discovery. Chapter 12: A Hybrid Explainable Artificial Intelligence Approach for Anti-Cancer Drug Discovery: Exploring the Potential of Explainable Artificial Intelligence in Computational Biology
Chapter 1: Artificial Intelligence for Healthcare Applications: A Review. Chapter 2: Open Problems of XAI Especially for Medical Domain. Chapter 3: Explainable AI in Biomedical Applications: Vision, Framework, Anxieties, and Challenges. Chapter 4: XAI in Drug Discovery. Chapter 5: The Use of Explainable Artificial Intelligence in Medical Image Processing: A Research Study. Chapter 6: Current Progress and Open Research Challenges for XAI in Deep Learning Across Medical Imaging. Chapter 7: From Black Boxes to Transparent Machines: The Quest for Explainable AI. Chapter 8: XAI and Disease Diagnosis. Chapter 9: Explainability and the Role of Digital Twins in Personalized Medicine and Healthcare Optimization. Chapter 10: XAI for Trustworthiness in Medical Tourism. Chapter 11: XAI for Advancements in Drug Discovery. Chapter 12: A Hybrid Explainable Artificial Intelligence Approach for Anti-Cancer Drug Discovery: Exploring the Potential of Explainable Artificial Intelligence in Computational Biology