Hatim Machrafi
Extended Non-Equilibrium Thermodynamics (eBook, PDF)
From Principles to Applications in Nanosystems
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Hatim Machrafi
Extended Non-Equilibrium Thermodynamics (eBook, PDF)
From Principles to Applications in Nanosystems
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book deals with physical properties at the nanoscale due to non-local effects introduced by extended irreversible thermodynamics (EIT). The book provides for a systematic approach to understand the behavior of thermal, thermoelectric, photovoltaic and viscous fluid properties as a function of size and other parameters in nanosystems.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 10.39MB
Andere Kunden interessierten sich auch für
- Hatim MachrafiExtended Non-Equilibrium Thermodynamics (eBook, ePUB)48,95 €
- Phase Change Materials for Thermal Energy Management and Storage (eBook, PDF)52,95 €
- Greg F. NatererAdvanced Heat Transfer (eBook, PDF)125,95 €
- David R. GaskellAn Introduction to Transport Phenomena in Materials Engineering (eBook, PDF)110,95 €
- Henry SmirnovTransport Phenomena in Capillary-Porous Structures and Heat Pipes (eBook, PDF)65,95 €
- Forrest E. AmesAn Introduction to Compressible Flow (eBook, PDF)48,95 €
- S. Can GülenApplied Second Law Analysis of Heat Engine Cycles (eBook, PDF)131,95 €
-
-
-
The book deals with physical properties at the nanoscale due to non-local effects introduced by extended irreversible thermodynamics (EIT). The book provides for a systematic approach to understand the behavior of thermal, thermoelectric, photovoltaic and viscous fluid properties as a function of size and other parameters in nanosystems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 225
- Erscheinungstermin: 21. Februar 2019
- Englisch
- ISBN-13: 9781351021937
- Artikelnr.: 56060475
- Verlag: Taylor & Francis
- Seitenzahl: 225
- Erscheinungstermin: 21. Februar 2019
- Englisch
- ISBN-13: 9781351021937
- Artikelnr.: 56060475
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Hatim Machrafi obtained his PhD from the Pierre and Marie Curie University (Paris 6), Paris, France. He has been working as a senior researcher at the University of Liège (ULiège), Liège, Belgium, and as visiting researcher at the free University of Brussels (ULB), Brussels, Belgium, specializing in non-equilibrium thermodynamics, nanotechnology applied to energetics and nanomedicine, and advanced materials. Recently, he is also active at the Sorbonne University, Paris, France, in the field of microfluidics and renewable energy.
1. Extended Non-Equilibrium Thermodynamics: constitutive equations at small
length scales and high. 2. Heat transfer in nanomaterials. 3. Heat
conduction in nanocomposites. 4. Thermal rectifier efficiency of various
bulk-nanoporous silicon devices. 5. Thermoelectric devices. 6. Enhancement
of the thermal conductivity in nanofluids and the role of viscosity. 7.
Nanoporous flow and permeability. 8. Opto-thermo-electric coupling for
photovoltaic energy. 9. Optimal enhancement of photovoltaic energy by
coupling to a cooled nanocomposite thermoelectric hybrid system. 10.
Nanomedicine: permeation of drug delivery through cell membrane. 11.
Self-assembled nanostructures as building blocks for nanomedicine carriers:
thermal and electrical conductance.
length scales and high. 2. Heat transfer in nanomaterials. 3. Heat
conduction in nanocomposites. 4. Thermal rectifier efficiency of various
bulk-nanoporous silicon devices. 5. Thermoelectric devices. 6. Enhancement
of the thermal conductivity in nanofluids and the role of viscosity. 7.
Nanoporous flow and permeability. 8. Opto-thermo-electric coupling for
photovoltaic energy. 9. Optimal enhancement of photovoltaic energy by
coupling to a cooled nanocomposite thermoelectric hybrid system. 10.
Nanomedicine: permeation of drug delivery through cell membrane. 11.
Self-assembled nanostructures as building blocks for nanomedicine carriers:
thermal and electrical conductance.
1. Extended Non-Equilibrium Thermodynamics: constitutive equations at small length scales and high. 2. Heat transfer in nanomaterials. 3. Heat conduction in nanocomposites. 4. Thermal rectifier efficiency of various bulk-nanoporous silicon devices. 5. Thermoelectric devices. 6. Enhancement of the thermal conductivity in nanofluids and the role of viscosity. 7. Nanoporous flow and permeability. 8. Opto-thermo-electric coupling for photovoltaic energy. 9. Optimal enhancement of photovoltaic energy by coupling to a cooled nanocomposite thermoelectric hybrid system. 10. Nanomedicine: permeation of drug delivery through cell membrane. 11. Self-assembled nanostructures as building blocks for nanomedicine carriers: thermal and electrical conductance.
1. Extended Non-Equilibrium Thermodynamics: constitutive equations at small
length scales and high. 2. Heat transfer in nanomaterials. 3. Heat
conduction in nanocomposites. 4. Thermal rectifier efficiency of various
bulk-nanoporous silicon devices. 5. Thermoelectric devices. 6. Enhancement
of the thermal conductivity in nanofluids and the role of viscosity. 7.
Nanoporous flow and permeability. 8. Opto-thermo-electric coupling for
photovoltaic energy. 9. Optimal enhancement of photovoltaic energy by
coupling to a cooled nanocomposite thermoelectric hybrid system. 10.
Nanomedicine: permeation of drug delivery through cell membrane. 11.
Self-assembled nanostructures as building blocks for nanomedicine carriers:
thermal and electrical conductance.
length scales and high. 2. Heat transfer in nanomaterials. 3. Heat
conduction in nanocomposites. 4. Thermal rectifier efficiency of various
bulk-nanoporous silicon devices. 5. Thermoelectric devices. 6. Enhancement
of the thermal conductivity in nanofluids and the role of viscosity. 7.
Nanoporous flow and permeability. 8. Opto-thermo-electric coupling for
photovoltaic energy. 9. Optimal enhancement of photovoltaic energy by
coupling to a cooled nanocomposite thermoelectric hybrid system. 10.
Nanomedicine: permeation of drug delivery through cell membrane. 11.
Self-assembled nanostructures as building blocks for nanomedicine carriers:
thermal and electrical conductance.
1. Extended Non-Equilibrium Thermodynamics: constitutive equations at small length scales and high. 2. Heat transfer in nanomaterials. 3. Heat conduction in nanocomposites. 4. Thermal rectifier efficiency of various bulk-nanoporous silicon devices. 5. Thermoelectric devices. 6. Enhancement of the thermal conductivity in nanofluids and the role of viscosity. 7. Nanoporous flow and permeability. 8. Opto-thermo-electric coupling for photovoltaic energy. 9. Optimal enhancement of photovoltaic energy by coupling to a cooled nanocomposite thermoelectric hybrid system. 10. Nanomedicine: permeation of drug delivery through cell membrane. 11. Self-assembled nanostructures as building blocks for nanomedicine carriers: thermal and electrical conductance.